
APPENDIX D

Calculating Scintillator Compton Spectra

(this text is from the Sophomore Lab Mathematica application Compton_Spectra1.nb available on the lab network drive)

Compton Scattering Formulas

Calculation of the probability of  the scattering of  a single high-energy photon by a single free electron initially at  rest
requires a fairly sophisticated quantum theory called Quantum Electrodynamics. The resulting equation is known as the

Klein-Nishina  formula, first  derived jointly by Oskar  Klein and Yoshio Nishina in 1929.  The differential  cross  section

for such scattering (integrated over all polarization states of the photon and electron) is given by the simple formula:
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Where q is the angle from the inital photon path to the scattered photon path,  „W = sin q „ q „f is the differential solid

angle about the angles q  and f  (defining the outgoing photon direction),  k0 = Ñw0  is  the initial  photon energy,  k  is  the

outgoing photon energy, re is the classical electron radius, and s is the scattering cross section. Even though expression

(1) is simple, its derivation is subtle and is beyond the scope of this text.

The  length  re  is  one  of  the  natural  units  of  length  for  the  electrodynamics  of  the  electron  and  is  formed  from  the

electron’s rest energy and charge. In Gaussian units, it is given by:

re =
e 2

me
= 2.817μ10-13 cm

It is called the classical electron radius because a thin spherical shell of total charge e and radius re  would have a total

Coulomb  potential  energy  of  me = 0.511 MeV,  the  rest  energy  of  the  electron.  The  situation  for  an  actual  electron  is

much more complex — this classical calculation doesn't include Planck’s constant Ñ, and, as you might therefore expect,

re  is not relevant to a full quantum mechanical description of the electron. Interestingly, however, re  turns out to be of

the same order as the radius of a typical atom’s nucleus.

The outgoing photon energy k  can be derived from the incoming photon energy k0 and the electron rest energy me  using

simple  relativistic  kinematics  of  an  elastic  collision  of  two  point  particles  (that  is,  using  conservation  of  energy  and

linear momentum), where the photon’s rest mass is 0:
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The recoil kinetic energy of the target electron is simply the difference te = k0 - k.  The maximum recoil kinetic energy

the electron could receive happens when q = p; in this case we have:
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The  minimum  outgoing  photon  energy  kmin  is  called  the  backscatter  energy  and  approaches  me 2  for  large  k0.  The

maximum  electron  recoil  kinetic  energy  defines  the  Compton  edge,  the  maximum  energy  observed  in  a  scintillator

Compton scattering spectrum. The minimum electron recoil  kinetic  energy is,  of  course,  0  (when q = 0) The functions

BackscatterEdge[] and ComptonEdge[] are provided to calculate kmin and temax.
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To  calculate  the  expected  Compton  scattering  spectrum  observed  in  a  scintillation  detector,  we  need  to  know  the

probability of scattering as a function of the electron's recoil kinetic energy, since it is this energy to which the detector

responds. To convert equation (1) to an expression for „s „ te, we note that:
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Now, since we want W q in this expression, we must integrate over the azimuth angle f, so that   „Wq = 2 p sin q „ q,
and from equation (2):
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From equation (2), we can get an expression for q to substitute into (1) and then (4):

cos q = 1 -
mek0 - k

k0 k
= 1 -

me te

k0 k

\ sin2 q = 2
me te

k0 k
-

me te

k0 k

2

(5)\
„s

„ te
=

pme re
2

k0
2

k

k0

+
k0

k
- 2

me te

k0 k
+

me te

k0 k

2

; k = k0 - te

To convert  the  expression (5)  into  a  probability  density  for  observing Compton scattered  electrons  with  various  recoil

energies  te,  we  note  that  the  probability  density  is  proportional  to  the  differential  cross  section  „s „ te,  but  must  be

normalized so that the total probability is 1:
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The following figure shows a plot of Pte from equation (6) for an incoming photon with k0 = 0.662 MeV (this plot was

generated using the function ComptonPDF[]):

Detector Resolution

Following a Compton scattering event in a scintillation detector the outgoing electron loses most of its kinetic energy by

ionizing  other  atoms  in  the  scintillator  material.  Eventually  most  of  the  original  energy  deposited  by  the  incoming

photon  is  converted  to  the  total  ionization  energy  of  many  slowly-moving  electrons  in  the  material  (the  electrons  are

near the bottom of the conduction band of the scintillator material). The scintillator material is engineered so that these

electrons  recombine  with  the  ionized  atoms mainly  through  the  efficient  production  of  visible-light  photons.  Many  of

these  photons  are  detected  by  a  photomultiplier  tube  attached  to  the  scintillator,  and  it  is  the  photomultiplier’s  output

signal  which  is  amplified  and  analyzed  to  estimate  the  energy  deposited  in  the  scintillator  material  by  the  incoming

photon.

Unfortunately, only a fraction of the visible-light photons generated by the scintillator are absorbed by the photomultipli-

er’s photocathode (this fraction defines the quantum efficiency of the detector). Nearly all of the absorbed photons cause

a photoelectron  to be emitted by the photocathode.  The collection of photoelectrons comprise the signal which is  then

amplified by the photomultiplier to produce its output. The absorption of any particular photon is random; the statistics

of the absorption process are well-described by the Poisson distribution, a discrete distribution with the single parameter

m, the expected (mean) number of events. Equations (7) and (8) give the probability density functions of the Poisson and

the familiar normal (Gaussian) distributions:

(7)Poisson Distribution : PP k ; m = ‰-m mk
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(8)Normal Distribution : PG x ; m, s2 = 1
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The variance of the Poisson distribution is equal to its mean, m. For mp 1, the Poisson distribution approaches that of a

normal distribution with mean and variance both equal to m, as illustrated by the following figure:

Since the standard deviation grows only as m , the family of Poisson distributions is characterized by peaks which are

relatively more well-defined for larger m values.  

A well-engineered scintillation detector produces a number of visible-light photons which is very nearly proportional to

the energy deposited by an incoming high-energy photon over a wide range of energies. The quantum efficiency of the

system  is  also  nearly  independent  of  the  number  of  visible-light  photons  produced,  so  that  a  scintillation  system’s

resolution  as  a  function  of  energy  may  be  accurately  characterized  by  a  single  parameter:  the  average  energy  per
photoelectron,  or  epe.  The  kinetic  energy  a  high-energy  photon  imparts  to  a  scintillator  electron  during  a  Compton

scatter,  te,  will  on average result  in  the generation of m = te epe  photoelectrons by the photomultiplier’s photocathode.

The actual number of photoelectrons produced by events with energy te  will vary randomly, as samples of the Poisson

distribution  with  mean  te epe.  This  distribution  has  a  fractional  standard  deviation  of  m  m = epe  te ,  so  the

resolution of the scintillation detector improves as epe is made smaller. Typical values for epe range from d 1000 eV for

a good sodium iodide (NaI) scintillator to  > 5000 eV for a plastic (organic) scintillator.

The  finite  resolution  of  the  detector  can  be  modeled by  its  response  function,  Rt ; te, epe.  The  response  function  is  a

distribution which gives the probability density that the detector will respond with an output corresponding to energy t
as  a  result  of  energy  te  actually  being  deposited  in  the  scintillator.  Since  the  detector  output  is  characterized  by  the

discrete Poisson distribution, the response function Rt ; te, epe must be discrete as well. We will, however, make use of

the similarity of the normal and Poisson distributions for large m and consider  Rt ; te, epe to be well represented by the

continuous normal distribution, equation (8), with mean and variance determined by the values of te and epe, as shown in

equation (9).

(9)Rt ; te, epe = PG t ; te, epe te = 1
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With the  response  function  R  in  hand,  the  observed Compton spectrum of  an  incoming photon  with  energy  k0,  which

includes the effects of the finite detector resolution, may be calculated. The expression for the probability density of the

measured energy t involves a generalization of a convolution integral of the Compton scattering distribution (6) and the

response function (9), as shown in expression (10).

(10)Pobserved t ; k0, epe = 
0

temax

Rt ; te, epe PCompton te ; k0 „ te

The figure above shows the results of the convolution on the measured Compton scattering distribution for an incoming

photon  with  k0 = 0.662 MeV.  This  figure  was  generated  using  the  functions  ComptonPDF[]  and

SmoothedComptonPDF[].
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