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INTRODUCTION 

In this experiment you will perform a version of the famous experiment of Otto Stern and 
Walther Gerlach. You will observe the quantization of a vector component of the magnetic 
moment of the electron, measure the value of the Bohr magneton, Bμ , and consequently 
determine an estimate of Planck’s Constant, = . 

After two years of effort, the Stern-Gerlach experiment was finally performed successfully in 
early 1922 in Frankfurt, Germany, using a beam of neutral silver atoms (Figure 1). It was meant 
to be a test of the early atomic quantum theory of Niels Bohr, Arnold Sommerfeld, and Peter 
Debye. The quantization conditions of this theory implied that the outer electron’s “orbit” in 
hydrogen-like atoms should be able to assume only two discrete orientations with respect to an 
external magnetic field, a condition which was referred to as space quantization (reference 1). 
The resultant component of the magnetic moment of the atom due to the little current loop 
formed by the electron’s orbital motion should assume only two values, Bμ± . 

Contrary to their understanding of the experiment, however, Stern and Gerlach’s results did not 
actually provide a confirmation of the early quantum theory at all, but instead observed the 
quantization of the inherent angular momentum of the electron itself, now known as spin. As 
pointed out in reference (1), the agreement of the Stern-Gerlach experiment with the old 
quantum theory was purely a coincidence, since the silver atom in its ground state actually has 
zero orbital angular momentum. The total spin angular momentum of the electron (and all other 
elementary material particles, known collectively as Fermions) has a quantum number of ½, and 
can therefore only assume two “orientations” with respect to an externally-defined direction. The 
resultant magnetic moment of the electron likewise has only two possible component values 

Figure 1: Gerlach's February 1922 postcard to Niels Bohr showing an image of his result. Note
that the splitting of the silver atom beam was only a fraction of a millimeter (right-hand image). 
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along an externally-defined vector direction, and it is this magnetic moment that the experiment 
determines. Because the gyromagnetic ratio of the electron, eg , is almost exactly 2, the 
component of electron magnetic moment along any direction also assumes values of very nearly 

Bμ± , which naturally led to confusion in interpreting the results. In fact, it wasn’t until 1927, 
two years after the postulation of electron spin in 1925, that the results of the Stern-Gerlach 
experiment were correctly interpreted as due to electron spin. 

You will perform the experiment using a beam of neutral potassium atoms, whose magnetic 
moment is dominated by that of the spin of the alkali metal’s single valence electron. By passing 
a beam of these atoms through a magnetic field with a uniform, nonzero gradient perpendicular 
to the beam axis, the atoms are deflected by the force exerted by the field on the atoms’ magnetic 
dipole moment. By observing the deflection of the atoms from the beam axis, you will analyze 
the nature of this dipole moment, which is a consequence of the electron’s angular momentum. 

THEORY:  A QUANTUM MAGNETIC DIPOLE IN AN EXTERNAL FIELD 

Magnetic dipole moments of atomic and subatomic systems arise as a consequence of the 
angular momenta of the systems, so to understand the behavior of the magnetic moments we 
must understand angular momentum. In this experiment, for example, the magnetic dipole 
moment of the potassium atom is a consequence of the angular momentum of its single valence 
electron. The intrinsic angular momentum of the charged electron gives rise to its magnetic 
dipole moment, and as a result the dipole moment vector is aligned with the electron’s angular 
momentum vector. Since the electron has no internal degrees of freedom which can dissipate 
energy, the torque exerted by an external magnetic field on the dipole moment would be 
expected to cause the electron to precess about the field direction, and the angle the magnetic 
moment μ

→
 makes with the field would remain constant. Interestingly and contrary to the 

predictions of classical theory, the electron does not radiate electromagnetic energy continuously 
as a result of this precession; such radiation would cause the electron’s magnetic moment to 
eventually align with the field, as it would provide a means for the electron to lose this potential 
energy due to the relative alignment of the dipole moment vector and the external field. 

The Caltech student will get a thorough introduction to the quantum theory of angular 
momentum in Physics 125. A good text providing this introduction is reference (2).  The 
quantum theory requires that the squared magnitude of any angular momentum be quantized as: 

 2 2 3 51
2 2 2( 1) ; 0, ,1, , 2, , ...J j j j= + ==  (1) 

As indicated in equation (1), the total angular momentum quantum number j must be a 
nonnegative integer multiple of ½. If the angular momentum is due to the motion of one or more 
masses about some spatial reference point (as in classical physics), then it turns out that the 
quantum number j must be an integer; in this case it is called orbital angular momentum and is 
usually referred to as L rather than J. Half-integer values of j cannot result from motion alone, 
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but must include some form of intrinsic angular momentum of a most elemental nature. Such a 
value of angular momentum is called spin (although no bits of matter inside an elementary 
particle are in motion), and is referred to as S. Generally, the total angular momentum J

JG
 of a 

system will be some quantum-mechanical vector combination of L and S. The intrinsic angular 
momentum quantum number of all material elementary particles (such as the electron) seems to 
be 1

2s = . 
 
Given an angular momentum vector with squared magnitude 2J , quantum mechanics permits 
the determination of only one component of the vector in a single experiment (which is 
conventionally chosen to be in the direction ẑ ): zJ . Given total angular momentum quantum 
number j, the quantization of zJ  is:  

 ; , 1, ..., 1,zJ m m j j j j= = − − + −=  (2) 

In the case of an electron’s spin, this would imply that the only values of ˆzS S z= ⋅
JJG

 are 
1
2zS = ± = . The quantum number m is often called the magnetic quantum number. 

This quantum phenomenon which allows only a finite number of values for the component of 
angular momentum along any externally-defined direction is the modern definition of space 
quantization. 

The magnetic moment of an atomic electron due to its orbital angular momentum is given by the 
expression: 

 Orbital magnetic moment: ;
2 2z L B L

e e

e eL m m
m m

μ μ μ= = =
JG JG =  (3) 

where Lm  is the magnetic quantum number, as in equation (2), of the orbital angular momentum 
vector L

JG
 (recall that Lm  must be an integer, since this is orbital angular momentum). The Bohr 

magneton, 230.927 10  Joule/TeslaBμ
−= × , is the fundamental quantum of magnetic moment. 

More generally, for any quantum system in a state with total angular momentum J L S= +
JG JG JG

, we 
find that the ẑ  component of the magnetic moment is given by 

 z Bg mμ μ=  (4) 

where the gyromagnetic ratio g is a constant independent of the magnetic quantum number m, 
but usually depends on the total angular momentum quantum number j (g need not be an integer 
or half-integer, although m must be). In the case of the electron, the relativistic effect called 
Thomas precession requires that 2eg =  (exactly). The quantum electrodynamics of Feynman 
provides higher-order corrections which increase its value by about 1% (the so-called anomalous 
magnetic moment of the electron). The theoretical prediction of the value of 2eg −  is the most 
precise numerical prediction of any physical theory to date. 
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A magnetic dipole with vector magnetic moment μ
JG

 in an external magnetic field B
JG

 has 
potential energy  

 U Bμ= − ⋅
JG JG

 (5) 

Since only B
JG

 represents a field with a gradient, and the curl of B
JG

vanishes in empty space, the 
force (not the torque) on a magnetic dipole is 

 
( ) ( ) (F U B B Bμ μ μ= −∇ = ∇ ⋅ = ⋅∇ + × ∇×

JG JG JG JG JG JG JG
)

x y z
B B BF
x y z

μ μ μ∂ ∂ ∂
∴ = + +

∂ ∂ ∂

JG JG JGJG  (6) 

In the case of a quantum system we could use equation (4) to calculate the components of μ
JG

; the 
force would become:  

 (Wrong!)B x y z
B B BF g m m m
x y z

μ
⎡ ⎤∂ ∂ ∂

= + +⎢ ⎥∂ ∂ ∂⎣ ⎦

JG JG JGJG
 (7) 

Unfortunately, this equation is useless for a quantum mechanical system (thus the “Wrong”)! It 
turns out to be impossible to simultaneously know the values of all components of a quantum 
system’s angular momentum (and thus its magnetic moment) – in fact, only one component 
may be measured as long as the magnitude of the total angular momentum is also fixed – that’s 
why there is only one magnetic quantum number m (and not xm , ym , zm  as in equation (7)). The 
resolution of this problem is not too hard, however: we just use the direction of B

JG
, and realize 

that the force on our quantum magnetic dipole must be along this direction.  

 

 

We can most easily see this fact by thinking of the situation for a classical dipole whose moment 
is parallel to the angular momentum of a classical system. The B

JG
 field exerts a torque on the 

dipole, which causes the dipole moment vector to precess about the magnetic field vector 
direction, as in Figure 2, because the dipole is associated with the angular momentum of the 
object. Clearly, in this case the component of μ

JG
 perpendicular to B

JG
 will average to zero (and 

thus the average force perpendicular to B
JG

 from equation (6)), whereas the component parallel to 
B
JG

 remains constant. The quantum situation is analogous – only the component of μ
JG

 parallel to 
B
JG

 contributes to the force on the dipole (if the period of the precession is short compared to the 

Figure 2: A magnetic field generates a torque on a magnetic dipole, which causes the dipole to precess
about the field direction, like a gyroscope. The dipole is a manifestation of the angular momentum vector of
the system. 

B

μ
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time the field acts on the dipole). Incidentally, this precession of a magnetic dipole moment can 
result in the phenomenon of spin magnetic resonance, which has many modern applications. 

Assume that at the location of the dipole the direction of B
JG

 is along ẑ ; the quantum expression 
for the force on a single electron becomes (recall that for an electron 2eg =  and 1

2m = ± ): 

 ˆ ˆz z
B B

B BF g m z z
z z

μ μ∂ ∂
= = ±

∂ ∂

JG
 (8) 

If a magnetic dipole moment is due solely to the spin of a single electron, then the magnitude of 
the force an external magnetic field gradient exerts can take on only one value, and the direction 
of the force is either parallel or antiparallel to the field at the position of the dipole. A classical 
magnetic dipole experiences an instantaneous force given by equation (6), where the dot product 
could take on any value between Bμ±

JG JG
. If the duration of the interaction is long, however, the 

precession of the dipole (figure 1) would again lead to an average force either parallel or 
antiparallel to the field at the position of the dipole. Unlike the quantum system, its magnitude 
could vary continuously depending on the angle between the dipole and the field. 

THE STERN-GERLACH APPARATUS 

General arrangement. Figure 3 (next page) shows a sketch of the arrangement of the oven, 
atomic beam, magnet, and detector. Potassium metal in the oven is heated to approximately 
116 °C. The oven is heated by a current of approximately ½ Ampere; an electronic feedback 
circuit controls the heating current to maintain a constant oven temperature, as measured by a 
thermocouple. Atoms evaporated from the potassium in the oven stream through the slit S1 and 
are collimated into a narrow, vertical beam by slits S2 and S3. The beam enters a region between 
the two magnet pole pieces which has a non-uniform magnetic field as described in this 
experiment’s Appendix A. The field imparts a horizontal velocity to the various potassium atoms 
depending on the orientations of their individual magnetic dipole moments and their vertical 
velocities. The atoms leave the field and coast upwards to the detection region. The detector can 
be moved horizontally using a micrometer; it produces a small current which is designed to be 
proportional to the flux of potassium atoms at its position. This experiment’s Appendix B derives 
the expected distribution of atom flux as a function of detector position. 

The detector. The detector is a 0.002 inch diameter tungsten wire heated to approximately 
1100 °K by a 300 mA current. Surrounding the wire is a cool collection conductor at a potential 
of approximately 8 Volts below that of the wire. When a potassium atom hits the wire, it is 
energetically favorable for its valence electron to transfer to the tungsten. The resulting positive 
potassium ion boils off the hot wire and is attracted to the surrounding collection conductor, 
where it picks up an electron from the metal and becomes a neutral atom. The flow of ions from 
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the wire to the collector creates a current (on the 
order of a few picoamperes or less) which is 
measured by a sensitive ammeter. 

Vacuum system. In order for the potassium atoms to 
have a reasonable chance of reaching the detector 
without being scattered by some offending air 
molecule, the system must have a fairly good vacuum 
(see the prelab problems). An oil diffusion pump 
followed by a rotating vane pump provides this 
vacuum. These pumps should remain on throughout 
the term, even when the apparatus is not being used. 
Otherwise, the potassium metal in the oven will 
quickly oxidize and the system will stop working. 
The vacuum is measured using an ion pressure 
gauge. Don’t activate the gauge while taking 
measurements of the potassium beam, because it 
increases the background current in the hot wire 
detector. The notes for Physics 6, experiment 9 
describe the vacuum system in more detail. 

Magnet power supply. The magnetic field is 
generated by a large electromagnet powered by an 
adjustable, regulated power supply. Because the field 
is determined by the magnet current, the power 

supply should be used in its constant-current mode. There is an accurate ammeter inserted in the 
circuit, along with a knife-switch which can reverse the current through the magnet.  

Never switch off the power supply or reverse the current flow in the magnet unless the power 
supply current first is reduced to zero! 

The magnet power supply can produce dangerously high currents at over 100 Volts (DC, of 
course), so don’t allow yourself to become a part of the magnet circuit! 

Because the magnet’s pole pieces are ferromagnetic, they are magnetized by the magnetic field. 
Consequently, reducing the current to zero does not completely eliminate the magnetic field. The 
reversing switch allows you to add a small current in the opposite direction to cancel this 
permanent magnetization and set the field to zero. The ferromagnetism also results in hysteresis, 
which makes the relationship between the power supply current and the resulting field dependent 
on the history of the past current settings. Since the field cannot be directly measured, you must 
use a chart (Figure 4, next page) which converts current to field strength. This chart is only 

Figure 3: The heart of the apparatus, with the
oven, atomic beam, magnet, and detector. 
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accurate when the current has been first increased to a maximum, driving the magnet into 
saturation, and then monotonically decreased to the desired value. A Mathematica notebook is 
available on the lab network drive which provides a current to magnetic field calculator using the 
calibration shown in Figure 4. 

Anytime you change the magnet current (even to set it to a lower value), run the current all the 
way to maximum and then reduce it monotonically to the new value you wish to set. If you 
inadvertently increase the current, even slightly, you must run the current all the way to 
maximum and then reset it as described. Otherwise hysteresis makes the chart showing the 
magnetic field value inaccurate. 

DEFLECTION OF ATOMS IN THE BEAM 

The magnet pole pieces are shaped so that the magnetic field has a nonzero gradient which is not 
particularly difficult to calculate. A description of the pole piece design and a calculation of the 
field gradient are given in this experiment’s Appendix A. The beam of neutral potassium atoms 
from the oven has a continuous distribution of vertical velocities because of its thermal origin. 
This velocity distribution is derived in this experiment’s Appendix B. This appendix also derives 
the resultant distribution of atom deflections due to the field gradient’s force on their individual 
magnetic moments. We refer to this continuous distribution of deflections as the Z Distribution. 
An example of the distribution is shown in Figure 5 (next page). Note how the finite width of the 
atomic beam from the oven can distort the observed distribution. This effect may be 

Figure 4: Calibration of the magnet. Because of hysteresis, this curve is only correct for magnet currents
decreasing monotonically from saturation (above 3.5 amps). The calibration is ±10% of the B value shown.
A Mathematica notebook is available in the documents folder of the sophomore lab network drive which
calculates the field strength given the magnet current. 
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approximated by performing a convolution of the ideal distribution with the shape of the 0-field 
atomic beam. The two peaks of the Z Distribution correspond to the two lines observed by Stern 
and Gerlach (right hand image in Figure 1). 

 

 
Figure 5: Plots of the Z Distribution for an oven temperature of 116 °C and a magnetic field of 0.546 Tesla. 
The top plot shows the ideal case of a perfectly-collimated atomic beam. The bottom plot shows a more 
realistic case of a Gaussian beam with a standard deviation of 0.2 mm. The maximum intensity occurs at 
deflections of  ± 0.5 mm for the ideal case; the finite beam width increases this to ± 0.6 mm (bottom plot). 
The ideal Z Distribution is derived in this experiment’s Appendix B. A Mathematica notebook is available 
in the documents folder of the sophomore lab network drive which calculates profiles like those plotted 
here. 
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PROCEDURE 

1. Check that the vacuum is no more than a few 510−×  Torr. If it is too high, seek assistance 
from your TA and the lab administrator. Do not leave the ion gauge activated while 
performing measurements of the atomic beam detector current. 

2. Turn on the power supplies for the oven and the hot wire detector. The warm-up current for 
the oven should be just over ½ Ampere; the hot wire current should be approximately 300 
mA. The detector current when the oven is cool should be no more than 1310−  Ampere. 
Adjust the micrometer to the approximate beam position, which is between 15.0 and 15.5 
mm on the micrometer. Ensure the magnet power supply current is set to 0 and that the 
magnet power supply is on. 

3. The beam should be detectable when the oven temperature reaches 100 °C. Adjust the 
micrometer to find the center of the beam, and then slightly adjust the magnet current to 
maximize the detector current at the beam position (if necessary, use the knife switch to 
reverse the current direction). This ensures that the magnetic field is 0, even with the 
magnet’s hysteresis. Do not take data until the oven temperature has stabilized. 

4. Increase the magnet current to about 1 Ampere and note that the detector current decreases. 
Run the magnet to saturation and then reduce the current to about .5 – 1.0 Ampere. Locate 
the two peaks in the detector current, one on either side of the 0-field beam position. Note 
how long it takes the detector current to stabilize when you change the detector position. 
Record the peak positions. You can estimate uncertainties in a peak position by moving off 
the peak and finding it again. By repeating this a few times, you can use the distribution of 
measurements to obtain a peak position and uncertainty. 

5. Check your peak separation against the predictions of the theory for your magnetic field and 
oven temperature. If the difference is more than 20% – 30%, check that you understand what 
you are doing with your TA. The theory predicts that for an oven temperature of 116 °C, the 
positions of the peaks are given by (see Appendices A and B): 

max 0.916mm / Tesla (oven temperature 116 C)z B= × °  

6. Find the pairs of peaks for several magnet current settings. A large field makes the peaks low 
and broad, so getting accurate positions in this case is difficult. Make sure you are 
comfortable with the instrument before attempting the hard data points. 

7. Obtain a detector current v. position profile for at least one magnetic field near 0.8 Tesla. 
Obtain a 0-field profile as well (review step 3 above and make sure the field is really 0). 

When finished, make sure the magnet current is zero and the oven and hot wire power supplies 
are secured. Leave the vacuum pumps on! 
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ANALYSIS 

The point of the analysis is to test the quantum theory as expressed by equation (8), so you must 
address the following questions: 

(1) How many peaks are observed in the detector current as a function of detector position (z)? 

(2) Are the positions of the peaks in accord with the theory, as augmented by the magnetic field 
gradient analysis of Appendix A and the velocity distribution in the atomic beam as analyzed 
in Appendix B? The separation of the peaks for the ideal Z Distribution is peaks max2Z zΔ = , 
with maxz given by (equations (A-18), (B-21), and (B-22)): 

 

peaks
max

2
2 3

2 3
1

2 2
1.76
cm

z
B

z
z

Z
z

l Bl l
kT z

B B
z

β

β μ

Δ
= =

⎡ ⎤ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥ ∂⎝ ⎠⎣ ⎦
∂

=
∂

 

Note that maxz  doesn’t depend on the mass of a potassium atom! The important idea from the 
equations above is that maxz  should be linear in the field B. To what level of accuracy are 
your results consistent with this claim? 

To accurately determine maxz  from your peak position data, you should correct for the effect of 
the finite 0-field beam width. Use your 0-field data to estimate this width, and then use the 
Mathematica notebook Z Distribution Calculator.nb to correct your observed maxz  to the ideal 

maxz  for a 0-width beam. Compare your measured nonzero magnetic field beam profile against 
the theory. You will have to scale the theoretical prediction and add a linear background to it in 
order to make a valid comparison with your data. 

Assuming that your results are consistent with the theory, what is your estimate of the value of 
the Bohr Magneton, Bμ ? What is the uncertainty in your estimate? How have you accounted for 
the magnet calibration uncertainty of 10%± ? 
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MATHEMATICA NOTEBOOKS FOR STERN-GERLACH DATA ANALYSIS 

The sophomore lab network drive has a folder of Mathematica notebooks useful for analyzing 
this experiment’s data. They can be found in the documents directory, in a subfolder of the 
Mathematica Data Analysis folder. A ReadMe file gives a brief description of each notebook. 
Copy the entire subfolder to your computer to use the notebooks. 

 

PRELAB PROBLEMS 

1. Calculate the maximum chamber pressure for a potassium atom in the oven beam to have at 
least a 0.99 probability of reaching the detector hot wire (assume a 30 cm path length and 
that both the potassium atoms and the air molecules have diameters of 2 Å). 

2. Use the Mathematica notebooks Zmax Calculator.nb and Z Distribution Calculator.nb to 
determine maxz  and to plot a Z Distribution profile for a magnetic field of 1 Tesla and an 
oven temperature of 116 °C. Use Magnet Field Calculator.nb to determine the required 
magnet current for this field strength. 

3. What is the ionization potential of potassium? What is the value of the Boltzmann factor 
( )exp /ionE kT−  for an oven temperature of 116 °C? This incredibly tiny number indicates 

how unlikely it is for the potassium beam to contain a significant number of ions rather than 
neutral atoms. 

4. Setting 2mv kT∼  provides an estimate of the average speed of the atoms in the oven. What 
is this speed for an oven temperature of 116 °C? For how long are the atoms exposed to the 
magnetic field (distance = 2l )? 

5. A student asks why electrons are not used in this experiment, rather than neutral potassium 
atoms (many quantum mechanics textbooks use a so-called “Stern-Gerlach” apparatus to sort 
electrons by spin polarization to perform various thought experiments). It is, after all, the 
spin of a single atomic electron that gives rise to the deflection of a potassium atom from the 
oven. Calculate the ratio of the force on the electron’s magnetic dipole moment to the 
Lorentz force eF q v B= ×

JG G JG
, where the velocity is given by the answer to the previous problem 

(use equations (8) and (A-18) to calculate the force on the dipole moment). What are the 
relative directions of these two forces, assuming v B⊥

G JG
? 

 






















