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COMPTON SCATTERING 

INTRODUCTION 
Experiment 30a introduced you to Compton scattering of high-energy photons by electrons. 
Your scintillator spectra acquired during that experiment included evidence of many Compton 
scattering events, as in Figure 1. A scintillator Compton spectrum shows the range of kinetic 
energies of the outgoing electrons following their interactions with the gamma ray photons. 
Experiments 32a and 32b more thoroughly investigate this interesting phenomenon, first 
predicted and then experimentally verified by the American physicist Arthur Compton.1 

Figure 1: A portion of a NaI scin-
tillator spectrum of the energies 
deposited by 0.66MeV gamma 
ray photons emitted by a 137Cs 
source. The Compton spectrum is 
clearly visible. 

 

In Experiment 32a the kinematics of Compton scattering are thoroughly investigated using γ-ray 
photons emitted by a 137Cs source. By considering the photon-electron interaction as an elastic 
collision between two particles, the outgoing energies of the scattered photon and recoiling 
electron are compared to the Compton scattering formula, derivable from a simple calculation 
using special relativity. Experiment 32b delves more deeply into the phenomenon by 
investigating the interaction dynamics: the electromagnetic forces exerted by the photon on the 
electron determine their probabilities of scattering into various angles. The Klein-Nishina 
scattering formula is a quantum-theoretical prediction of these probabilities.2 The 
instrumentation used for these experiments is a very small scale version of what is commonly 
used for high-energy particle research. 

                                                 
1 Arthur Holly Compton won the 1927 Nobel Prize for his 1923 experiments. Compton demonstrated the particulate 
nature of electromagnetic radiation, first theorized by Einstein in his 1905 explanation of the photoelectric effect (for 
which Einstein won the 1921 Nobel Prize). Compton was a famous and important figure in American physics 
research, even appearing on the cover of Time Magazine in 1936. 
2 The Swedish physicist Oskar Klein and the Japanese physicist Yoshio Nishina jointly derived their famous formula 
in 1928 while working with Niels Bohr in Copenhagen, Denmark. Read more about their achievement in the Theory 
section below and in this text’s Appendix B. 

Compton scattering spectrum

Energy
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THEORY 

Characteristics of Compton scattering 
One must be careful to distinguish Compton scattering from other processes for scattering 
electromagnetic radiation by matter. The defining characteristic of Compton scattering is that it 
is a quantum process associated with an incoherent interaction between a single photon and a 
free electron. It is a quantum process because the incident electromagnetic radiation must be 
interpreted as a stream of photons (quanta), each behaving as an independent particle with 
kinetic energy and momentum.3 

Compton scattering is incoherent: it is completely describable by considering the interaction of a 
single photon with a single electron, ignoring the fact that there may be many nearby “spectator” 
electrons (within a fraction of a nanometer, and whose wave functions may significantly overlap 
that of the target electron). In contrast, descriptions of phenomena such as metallic and specular 
reflections, refraction, and diffraction require phase-coherent interactions of the incident 
radiation with many electrons over distances large compared to the radiation’s wave length. 

Compton scattering involves the response of a free (unbound) electron. Of course, atomic 
electrons are bound to their atoms by Coulomb forces. If, however, the energy of the photon-
electron interaction is large compared to the electron’s binding energy to its parent atom, then 
that binding energy may offer only a small perturbation, and Compton scattering is a good model 
of the interaction. This will be most applicable to high-energy photons (x-rays and γ-rays) 
encountering weakly bound (valence) electrons, especially in light atoms such as carbon. At low 
photon energies, the binding energy of the electron must not be ignored. In the case of visible 
light, whose photon energies are small compared to even an outer electron’s binding energy, 
incoherent scattering by atomic electrons becomes Rayleigh scattering.4 

                                                 
3 Interestingly, this idea is in some sense a vindication of Rene Descartes’s and Isaac Newton’s corpuscular theory 
of light (c. 1670). Newton thought of light as composed of massless particles moving at finite velocity. His theory of 
light remained popular until the late 18th century, after which Christian Huygens’s wave theory finally took 
precedence. Turns out both theories were right, and therefore both were wrong! More correctly, both are thought to 
be different asymptotic limits of the more comprehensive theory called quantum electrodynamics, which is, in turn, 
now considered to be part of the low-energy asymptotic limit of electroweak theory, part of the standard model of 
particle physics. 
4 After the British physicist J. W. Strutt (Lord Rayleigh, 1842–1919). Rayleigh scattering is an incoherent version of 
the atomic electrons’ responses which gives rise to refraction of visible light. It is mainly responsible for the blue 
color of the sky (in contrast, bodies of water more than a couple of meters deep appear blue mainly because of 
resonant absorption of long wavelengths by water molecules). Rayleigh was awarded the 1904 Nobel Prize in 
Physics for his discovery of argon (with the British chemist William Ramsay, who received the 1904 Prize in 
Chemistry). 
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Kinematics: the Compton scattering formula (Experiment 32a) 
We shall analyze the kinematics of Compton scattering as an elastic collision between a photon 
and an electron (initially at rest) as shown in Figure 2. The derivation here is reproduced from 
the corresponding section of General Appendix A: Relativistic Kinematics.5 To simplify the 
notation, we choose units such that c ≡ 1 and ℏ ≡ 1. Thus both the photon’s kinetic energy and its 
momentum may be represented by its wave number (in these units, its kinetic energy and its 
momentum are equal), and the electron’s mass m is represented by its rest energy, 0.511 MeV. 
Given the incoming photon’s energy k0 and particle rest energy m, we want the outgoing photon 
energy k ′ as a function of its outgoing direction (turned by angle θ  from the incoming photon 
trajectory); the particle’s outgoing 4-momentum following the interaction is then ( , )mE p .6  

  
Figure 2: Compton scattering of a photon by an initially stationary electron. 

Start with energy conservation: the total system energy is unaffected by the collision. Since the 
electron is an elementary particle, its rest mass must remain constant, and the collision must be 
elastic. Thus: 

Energy conservation: 0
2 2 2 2

0( )
m

m

k m k E
k m k E p m

′+ = +

′∴ + − = = +
  

where in the second equation above we’ve used the relativistic invariance of the norm of the 
electron’s 4-momentum, its rest energy: 2 2 2.mm E p= −  The outgoing electron’s kinetic energy T 
is given by 0 .mT E m k k′= − = −  When θ = 180°, the corresponding electron kinetic energy T is 
called the Compton edge energy. 

To continue the derivation, use momentum conservation to determine 2,p  which is the sum of 
the squares of its horizontal and vertical components in Figure 2. The vertical component equals 

                                                 
5 http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf. 
6 Recall that the relativistic 4-momentum of an object has a time-like component equal its total energy and a space-
like vector equal to its linear momentum vector. It has a Lorentz-invariant norm (time-like component squared 
minus the squared magnitude of the space-like vector) equal to square of the object’s rest energy (internal energy). 

θ

p

0k


k′


m

http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf
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that of the outgoing photon: sink′ θ ; the horizontal component of p equals the difference 
between two photons’ horizontal components: 0 cosk k′− θ . Therefore, 

Momentum conservation: 
2 2 2

0
2 2

0 0

( cos ) ( sin )

2 cos

p k k k
k k k k

′ ′= − +

′ ′= + −

θ θ

θ
  

Substituting this expression for 2p  into the energy conservation expression and collecting terms: 

 0 0( ) (1 cos )m k k k k θ′ ′− = −   

Solving for k ′ gives the important result: 

 Compton scattering formula 

 
( )

0 0

20 0 1
21 1 cos 1 2 sin

k kk k k
m m

′ = =
+ − +θ θ

  (32.1) 

This is the kinematic relationship between incoming and outgoing photon energies you will test 
in Experiment 32a. Compton expressed this relationship in terms of the photons’ wavelengths: 

 ( )0 1 cos ; 2C C m′ − = − ≡λ λ λ θ λ π /   (32.2) 

(remember that we’re using units where c ≡ 1 and ℏ ≡ 1). The electron’s Compton wavelength 
C =λ  0.02426 Å.  

In an outstanding series of experiments during 1921–1922 Compton determined the wavelengths 
of scattered photons from their diffraction by a crystal.7 His remarkable 1923 paper reported a 
measured value for λC of 0.022 Å.8 Compton’s results provided extremely strong evidence for the 
actual existence of Einstein’s quanta of electromagnetic radiation. Referring to the conflict 
between said quanta (photons) and a theory of radiation based on Maxwell’s equations, Einstein 
in 1924 remarked: “We now have two theories of light, both indispensable, but, it must be 
admitted, without any logical connection between them, despite twenty years of colossal effort 
by theoretical physicists.”9 Resolution of this conundrum awaited the development of quantum 
electrodynamics.  

                                                 
7 Roger H. Stuewer, “Einstein’s Revolutionary Light-Quantum Hypothesis,” HQ-1 Conference on the History of 
Quantum Physics, Max Planck Institute for the History of Science, (2007): http://quantum-history.mpiwg-
berlin.mpg.de/eLibrary/hq1_talks/keynote/34_stuewer/stuewer_hq-1_pres. 
8 Arthur H. Compton, “A quantum theory of the scattering of x-rays by light elements,” Physical Review 21, 483 
(1923): https://journals.aps.org/pr/abstract/10.1103/PhysRev.21.483. 
9 David C. Cassidy, “Focus: Landmarks: Photons are Real,” Physical Review Focus 13, 8 (2004): 
https://physics.aps.org/story/v13/st8. 

http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/hq1_talks/keynote/34_stuewer/stuewer_hq-1_pres
http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/hq1_talks/keynote/34_stuewer/stuewer_hq-1_pres
https://journals.aps.org/pr/abstract/10.1103/PhysRev.21.483
https://physics.aps.org/story/v13/st8
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Dynamics: the Klein-Nishina formula (Experiment 32b) 

Scattering cross section 
Given the kinematics described by the Compton formula (32.1), what remains is to determine the 
probability of the scattering event depicted in Figure 2. This can only be calculated by 
considering the nature of the interaction between the photon and the electron. Thinking 
classically, of course, we would consider the “stream of photons” to be equivalent to an 
incoming beam of electromagnetic radiation. This radiation would exert Lorentz forces on any 
electrons present, causing them to oscillate. Each oscillating electron would in turn generate an 
outgoing pattern of electromagnetic radiation, which could then be interpreted as a somehow 
equivalent stream of scattered photons. The ratio of the intensities of the induced radiation to the 
incident radiation would then be interpreted as the probability of the scattering. 

Scattering probability is normally expressed as a scattering cross section, which represents an 
“effective area” subtended by a stationary target as seen by a stream of incident particles. To see 
why this is so, consider Figure 3. In this simple scenario, the targets obstruct a fraction of the 
total cross sectional area of the incident beam as it passes through a volume containing them, 
each individual target obstructing an area σ. The fraction of the total incident beam area 
obstructed by the targets becomes the probability that any one incident particle is scattered. In 
this case, the area σ would represent the total scattering cross section of a single target. 

Figure 3: A very thin section of a volume 
containing N target particles, each with cross 
sectional area σ. If the volume’s total cross 
sectional area is A, the targets obstruct a 
fraction Nσ/A of the area. On average, that 
fraction of a uniform beam of incident particles 
will encounter targets and be scattered. 

 

This rough idea is made more rigorous by its development in this text’s Appendix A. You should 
read and thoroughly understand that material in order to follow the rest of this section. In that 
appendix you will also be introduced to the concept of dσ/dΩ(θ, φ), the differential cross section 
for scattering toward a particular outgoing direction specified by the spherical coordinate angles 
(θ, φ). Measuring the differential cross sections for scattering of the outgoing photon into various 
directions is the whole point of Experiment 32b. 
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Klein-Nishina scattering cross section 
During the brief period 1926–1928 the young British theoretical physicist Paul Adrien Maurice 
Dirac wrote a series of papers which would revolutionize our understanding of the nature of the 
most fundamental laws of physics. His initially-controversial masterpiece, “The quantum theory 
of the electron,” not only incorporated the concept of electron spin (intrinsic angular momentum 
with no classical counterpart), but also predicted the existence of antimatter as an inseparable 
partner to matter (required by any consistent, relativistically-correct quantum theory).10  

Dirac analyzed Compton scattering in 1926 while still a graduate student and derived the 
following differential cross section for the process (in this text’s Appendix B we derive this 
formula in a simple way very different from Dirac’s method): 

“Spinless” electron scattering: 
0

22
2(1 cos )2

edσ r k θd k
′ = + Ω  

 (32.3)  

In this expression the ratio k ′/k0 is calculated at angle θ using the Compton scattering formula 
(32.1). The constant re is known as the classical electron radius, 2.818×10–15m. It is discussed 
more thoroughly in the description of Thomson scattering in Appendix B. The final factor in 
(32.3) includes two terms: one for incident photons linearly polarized perpendicularly to the 
plane of scattering, the other for photons whose polarization lies in the scattering plane. The sum 
of these terms represents the overall rate of scattering for an unpolarized stream of incident 
photons.  

Unfortunately, (32.3) neglects the fact that an electron has a magnetic moment generated by its 
intrinsic angular momentum (spin 1/2). This magnetic moment also interacts with the incident 
photons’ electromagnetic fields and serves as an additional scattering mechanism. Dirac’s 1928 
papers provided the theoretical framework to properly calculate the additional effects of the 
electron’s spin, but that theory is more complicated, subtle, and difficult to apply. Oscar Klein 
and Yoshio Nishina worked feverishly in the months following Dirac’s publication to understand 
his ideas and apply them to Compton scattering, publishing their calculation only six months 
later.11 By successfully including the effects of the electron’s spin, their result provided a slight 

                                                 
10 P. A. M. Dirac, “The quantum theory of the electron,” Proc. Royal Soc. A, 117, 610 (1928): 
http://rspa.royalsocietypublishing.org/content/117/778/610; “…Part II,” Proc. Royal Soc. A, 118, 351 (1928): 
http://rspa.royalsocietypublishing.org/content/118/779/351. Dirac’s papers during this period also introduced into 
quantum mechanics time-dependent perturbation theory, the mathematics of commutators and spinors, his delta 
function, and the second quantization of boson fields such as electromagnetism. The positron (anti-electron) was 
identified by the Caltech physicist Carl Anderson in 1932, and Dirac shared the 1933 Nobel Prize with Erwin 
Schrödinger. Anderson was awarded the 1936 Nobel Prize.  
11 O. Klein & Y. Nishina, “The Scattering of Light by Free Electrons according to Dirac's New Relativistic 
Dynamics,” Nature, 122, 398 (1928): http://www.nature.com/articles/122398b0.pdf. See also Footnote 24 in 
Appendix B. 

http://rspa.royalsocietypublishing.org/content/117/778/610
http://rspa.royalsocietypublishing.org/content/118/779/351
http://www.nature.com/articles/122398b0.pdf
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modification (at first glance) to (32.3): the addition of another term to its final factor, shown in 
the following equation: 

 0

0 0

22 2
2 ( )1 cos2

edσ r k k kθd k k k
 ′ ′− = + +   ′Ω     

   

This additional term due to photon scattering by the electron’s magnetic dipole moment is also 
the result of an average over the possible orientations of the electron’s spin (both before and after 
scattering) as well as the incident and scattered photons’ polarizations. Clearly this term is 
positive, thus increasing the expected differential cross section at all scattering angles greater 
than 0. Its effect is evidently greatest for large incident photon energies and for large scattering 
angles. We may put this formula into its more common form by substituting 22 sin θ−  for 

21 cos θ+ , then expanding the numerator of the extra term and simplifying. The result is the 
famous formula: 

Klein-Nishina scattering: 0

0 0

22
2sin2

edσ r k k k θd k k k
′ ′   = + −   ′Ω    

 (32.4)  

Other than an outline of the explanation of the anomalous Zeeman effect in atomic spectra given 
in Dirac’s 1928 papers, this formula was the first formal result derived from his theory of the 
electron which was subject to available experimental tests of the time.  It gives the expected rates 
for the scattering of high-energy photons into various angles θ. The ratio k ′/k0 and the constant 
re in (32.4) are defined the same way as in (32.3). Plots of (32.4) and (32.3)  for the 137Cs γ-ray 
used in Experiments 32 are shown in Figure 4. 

 
Figure 4: Klein-Nishina differential cross section for a Cesium-137 photon. Also shown is the cross 
section in the limit of very small photon energy, which is the same as the classical, Thomson cross 
section (see Appendix B). The dashed line shows the cross section given in equation (32.3), which 
neglects the electron’s spin. 
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THE APPARATUS 
Overview: capturing Compton events 

 
Figure 5: Setup for capturing and measuring Compton scattering events. Collimated γ-rays from 
a 137Cs source illuminate a plastic scintillator (the target). A NaI scintillator is positioned at an 
adjustable angle θ away from the incident beam, intercepting a small solid angle ΔΩ. A scattering 
event is recognized by near-simultaneous detections in the target scintillator (outgoing electron) 
and the NaI scintillator (outgoing photon). The two scintillator outputs measure the kinetic 
energies of the outgoing particles. The center of the target volume is approximately 90cm from 
the 137Cs source. The “protractor” radius for the NaI scintillator is approximately 40cm. 

The setup for experiments 32a and 32b is diagrammed in Figure 5. Originally designed and 
constructed in 1975 by Caltech undergraduate Kevin Ruddell (BS ’75), the basic concept is to 
use the apparatus to select for Compton events with a specific photon scattering angle θ. By 
using scintillators whose output pulse strengths can be measured using multichannel analyzers 
(MCAs, as in Experiment 30a), both the outgoing electron and the outgoing photon kinetic 
energies can be measured. Measurements are triggered by near-simultaneous detections in the 
two scintillators so that they may be associated with a single Compton scattering event. Incident 
high-energy photons are generated by a Cesium-137 source, which outputs 0.6616 MeV γ-rays 
and 32 keV x-rays. The direction of the incident photon stream is collimated using holes in the 
lead shielding surrounding the source. 

The target of the incident photon beam is a small, rectangular piece of plastic scintillator material 
attached to a photomultiplier tube (PMT). The low atomic numbers of the scintillator atoms 
(predominantly carbon and hydrogen) ensure that Compton scattering is the dominant interaction 
of the incident photons with the target material. Its small size (see Figure 6 on page 9) ensures 
that it is uniformly illuminated by the incident photon stream. Its low density gives it an incident 
photon attenuation length (mean free path) of just over 9.6 cm (see Appendices A and C).  
Coupled with its depth of 3.5 cm, about 30% of the incident photons should be scattered by the 
target. 

θ

ΔΩ

137Cs
0.66 MeV γ
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The outgoing photon scintillator is a sodium iodide (NaI) crystal as in Experiment 30a. Its 
diameter and distance from the target determine the solid angle ΔΩ around the nominal 
scattering angle θ for which scattered photons are intercepted and can be detected. The 
scintillator’s density and thickness ensures that it has a high probability of detecting any 
scattered photons which may enter it. 

  
Figure 6: The target scintillator/photomultiplier (left) and the outgoing photon scintillator/ 
photomultiplier (right). Viewed from the incident photon source, the plastic target scintillator is 
1.9cm wide × 3.6cm high × 3.5cm deep. The 5cm diameter NaI photon scintillator may be 
positioned at various angles from the target using a large protractor (partially shown in the 
photo).  

The selected scattering angle θ may be changed by varying the position of the outgoing photon 
scintillator (Figure 6). The experimenter can then collect data regarding both the outgoing 
particle energies and the scattering rate as a function of scattering angle. For Experiment 32a, the 
outgoing energies are the primary focus so that the kinematic Compton scattering formula (32.1) 
may be tested. Experiment 32b looks at the scattering rates in order to test the Klein-Nishina 
formula (32.4).  

The relative positioning of the table protractor and the scintillators limit the accuracy with 
which the scattering angle θ may be determined. The uncertainty in θ is probably 
approximately ±1° (systematic) with an additional ±1° (random, independent). 

The overall dimensions of the source and scintillator arrangement result in total photon path 
lengths of over a meter from source to outgoing photon scintillator. In addition, the scattering 
probability into the resulting ΔΩ is expected to be quite small, especially for large θ (refer back 
to Figure 4 on page 7). Consequently, the incident photon source must be fairly strong in order to 
generate scattering data in a reasonable time. The 137Cs source activity in 2018 is approximately 
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19 milliCurie (mC: 3.7×107 decays/sec), quite large compared to the ~1 microCurie (uC) 
sources used in Experiment 30a and for detector energy calibration in these experiments — thus 
the need for a heavy, lead-lined box to contain the source. 

The scintillator photomultiplier tubes (PMTs) are designed to output current pulses with 
integrated charges proportional to the energies deposited in the scintillators. The next section 
describes the PMT pulse processing electronics used in the experiments. 

Pulse processing electronics 
The target and outgoing photon scintillators generate light which is detected by their attached 
photomultiplier tubes (PMTs). Following a single photon detection event, the output of a PMT is 
a tiny current pulse whose total integrated charge is designed to be proportional to the energy of 
the light pulse produced by its scintillator. In the target scintillator this corresponds to the kinetic 
energy of the outgoing electron following a Compton scattering event. In the outgoing photon 
scintillator it corresponds to the interaction of the scattered photon with an atom in its sodium 
iodide (NaI) crystal. The current pulses generated by the scintillator PMTs are processed by the 
experiment’s electronics system to identify Compton scattering events and to measure and record 
the integrated charges of the two PMT pulses associated with these events. Figure 7 provides a 
cartoon illustration of the experiments’ electronics, identifying its major components. 

 
Figure 7: Electronics used to process and record Compton scattering events. A: high voltage power 
supplies for the scintillators’ photomultipliers; B: target scintillator/photomultiplier; C: outgoing 
photon scintillator/photomultiplier; D: signal processing electronics (coincidence detection and 
pulse energy measurement); E: computer control and data capture. 

High voltage power supplies (HVs) activate the scintillators’ PMTs. The incoming photon rate 
from the 137Cs source is quite high, so the average output current produced by the many target 
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PMT pulses is relatively large. Consequently, its power supply must be able to source relatively 
high currents to the PMT in order to mitigate inaccuracies caused by rate-related gain shifts. The 
pulse processing electronics system does not have gain adjustments accessible to the 
experimenter, so the HV supply voltages to the PMTs must be adjusted to set the system gains. 

The pulses from each PMT are processed in parallel by essentially identical electronics, as 
diagrammed in Figure 8.  

 
Figure 8: Signal flow from the scintillator photomultipliers (PMTs) to the digitizers (QVTs). First the 
PMT output pulses are aligned in time by using lengths of coaxial cables to match the pulse delays. 
As they are routed to their respective charge-integrating analog-digital converters (QVTs), the 
PMT pulses also generate digital event signals using two sections of the Quad Discriminator unit 
(QD). If the event signals overlap, the Coincidence Unit (CU), which is just a fancy logical AND gate 
(“∧”), generates a trigger event, which in turn enables the QVTs to digitize only these coincident 
PMT pulses. Delays are inserted into the pulse signals using coiled lengths of additional cable to 
ensure that the trigger signals arrive at the QVTs just before the PMT pulses. 

The signal processing scheme proceeds as follows (refer to Figure 8 as you follow along): 

1. Match the two scintillator/PMT pulse output delays by using an appropriate length of signal 
cable between each PMT output and its electronics input (5 ns/meter propagation delay in a 
signal coaxial cable). 

2. Divide each PMT pulse output into two parallel signal chains: analog pulse integration for 
multichannel analyzer (MCA) measurement, and digital event coincidence detection for 
MCA triggering. 

3. Event coincidence detection starts by first amplifying each PMT pulse output and then 
comparing it to a threshold level with a discriminator (a single channel of a Quad 
Discriminator unit, QD). If a PMT pulse exceeds its threshold, the QD outputs a digital event 
pulse. The threshold level is set high enough to reduce false event detections caused by noise. 
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4. The event pulses from the two PMT channels are input to a coincidence unit (CU). This 
device continually performs a logical AND of its inputs. Whenever PMT event pulses at the 
CU inputs overlap in time, the CU’s AND function is satisfied, and it outputs a digital 
coincidence pulse. 

5. The CU coincidence pulse is connected to the Trigger inputs of the two pulse MCA digitizers 
(called QVTs for their charge-voltage-time measurement modes). The presence of a trigger 
pulse enables each QVT to respond to the next analog PMT pulse arriving at its signal input. 

6. While the digital coincidence processing goes on, the analog PMT pulses continue along 
additional coaxial cabling to QVT charge integrating (Q) signal inputs. The cables slightly 
delay these pulses so that a CU coincidence pulse arrives at the QVT Trigger inputs first.  

A custom interface unit (IU, not shown in Figure 8) for each QVT controls its operation and 
provides a computer control interface. When a QVT unit digitizes its PMT pulse following a 
trigger event, it signals the IU and provides the digitized PMT pulse strength value. The IU 
immediately disables the QVT (so that it won’t respond to additional pulses) and signals the 
control computer that it has QVT data available. When the computer sees that both QVTs have 
digitized data for their respective PMT pulses, it reads the data and then signals the IUs to enable 
their QVTs to respond to another event. Computer software (described in the next section) 
performs the MCA function to generate scintillator energy spectra from the QVT data. 

Software 
Two application programs will be used to control the experiments’ data acquisition and generate 
scintillator energy spectra: MCA, used to generate scintillator spectra from each individual QVT 
in order to set system gains and perform energy calibrations; and Compton Experiment, used to 
collect coincidence data from both QVT channels in order to correlate target and outgoing 
photon scintillator energies and event rates with scattering angle. The operation of each 
application is described in the following sections. For data analysis, the Exp32.nb notebook 
augments CurveFit with functions useful for displaying and analyzing coincidence MCA data.  

MCA application 
The MCA application software is used for individual scintillator energy calibration. It controls a 
single QVT unit and creates a standard MCA histogram of event counts vs. channel number. The 
user can select which QVT unit to control (target or outgoing photon), so MCA histograms can 
be obtained from each of the two detectors for the several calibration γ-ray sources. MCA 
histograms are saved as CurveFit *.mca data files, which can then be input as Standard 
CurveFit Data Files. The data are in the format x: MCA channel, y: event counts. An example of 
the MCA application user interface window is shown in Figure 9. 
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Figure 9: Sample MCA application user interface window. The displayed histogram is of a Cs137 calibration 
source using the plastic (target) scintillator. The low atomic number of the carbon atoms in this scintillator 
makes photoelectric absorption of the 0.6616 MeV gamma photons very unlikely, so only a Compton 
spectrum is evident. The MCA application controls are very basic. The MCA selector chooses the scintillator 
to use: “MCA 1” selects the target scintillator, “MCA 2” the NaI scintillator. 

Compton Experiment application 
The Compton Experiment application software is used to collect coincidence data from both 
QVT units. It controls both the target and outgoing photon QVTs, and collects event data 
consisting of pairs of MCA channel numbers, one value from each QVT. It creates MCA 
histograms for both detectors from the coincidence event data. Additionally, it can create a 
scatter data plot of all of the individual event channel pairs. When data are saved, it creates 
*.x.mca and *.y.mca histogram files for the target and outgoing photon detectors, respectively. 
Each of these is a Standard CurveFit Data File with the format x: MCA channel, y: event 
counts.  It also creates a large *.xy.mca data file which contains coincidence channel pairs for 
every detected event with the format x: target MCA channel, y: outgoing photon MCA channel. 
The main user interface window is shown in Figure 10; the scatter plot window in Figure 11. 
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Figure 11: The Compton Experiment scatter 
plot window. Activating and erasing this plot 
and its data is controlled independently of the 
data in the main window. If there are many 
thousands of points in the plot, then it may 
cause a noticeable time delay when updated. 
The user can select how many points to 
collect between plot updates so that the time 
impact is mitigated. The scatter plot shown 
was generated from the set of events also 
displayed in Figure 10. 

 

 
Figure 10: Compton Experiment application main window. MCA histograms of both the target and NaI 
scintillators are generated from the coincidence event detections. As with the MCA application, the user 
interface is quite simple. The MCA histograms shown were generated with the NaI scintillator set at angle θ 
equal to 60 degrees.  
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Interpreting scatter plots 

 

Figure 12: The relationship between the 
event scatter plot (from Figure 11) and the 
individual scintillator channel histogram data 
plots (from Figure 10). The scintillator 
histograms provide projections of the events 
onto their respective axes, x for the target 
scintillator and y for the outgoing photon 
(NaI) scintillator. Each histogram channel 
then provides a count of the number of 
events projected into that particular channel. 

 

Careful interpretation of an event scatter plot and its corresponding scintillator histograms is key 
to proper analysis of your experimental results (see Figure 12). Even when the angle θ to the 
outgoing photon (NaI) scintillator is held fixed, the scatter plot is complicated by the many 
possible combinations of photon interactions in the two scintillators which may result in a 
particular event detection. Possibilities include various combinations of one or more Compton 
scatters in the target scintillator followed by Compton scatters and/or photoelectric absorption in 
the outgoing photon (NaI) scintillator (we disregard the very rare possibility of photoelectric 
absorption in the target scintillator). In addition, a scattered photon leaving the target may 
Compton scatter off of the table supporting the apparatus or some other object and then enter the 
NaI scintillator, triggering an event detection. Lastly, two incident photons may scatter in the 
target nearly simultaneously, the outgoing photon of one of which may then enter the NaI 
scintillator. 

Disregarding the final two possibilities detailed above, a single incident photon deposits some 
fraction of its energy into the target scintillator through Compton scattering. The scattered 
photon then enters the NaI scintillator, depositing some or all of its energy depending on whether 
it is photoelectrically absorbed or only Compton scatters. The energies deposited in the two 
scintillators determine the respective channel numbers of the event. If the scattered photon is 
photoelectrically absorbed, then all of the original, incident photon’s energy (0.6616 MeV from 
the 137Cs source) is split between the two scintillators. The oval cluster near the center of the 
scatter plot in Figure 12 contains events which correspond to a single Compton scatter in the 
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target followed by photoelectric absorption in the NaI detector. Note the “full energy” peak in 
the NaI (y-axis) histogram aligned with this cluster of events. 

The various other possibilities described above result in events falling into other regions of the 
scatter plots. Consider the left-hand graphic shown in Figure 13, which contains the same data as 
Figure 12. Regions 1 and 2 of the plot contain events which involve a single Compton scatter in 
the target followed by either photoelectric absorption or Compton scattering of the outgoing 
photon in the NaI scintillator. These are the events we are most interested in. Region 3, filling 
most of the rest of the plot, includes events which involve multiple Compton scatters in the target 
whose final outgoing photons happen to be detected by the NaI scintillator. 

 
Figure 13: Scatter plots illustrating the various regions into which events may fall. The left-hand plot is for 
an outgoing photon scintillator angle of 60°. The significance of the variously identified regions of the plot is 
explained in the text. The right-hand plot is a superposition of three event data sets: 20° (brown), 60° (red), 
and 150° (orange). The diagonal blue line shows the trend in the position of the oval cluster of events 
(corresponding to region 1 in the left-hand plot) as the angle to the NaI scintillator is changed. 

The right-hand graphic of Figure 15 shows how the scatter plot changes with the deflection angle 
θ to the NaI scintillator (results for angles of 20, 60, and 150 degrees are shown). The diagonal 
blue line shown in the plot roughly represents the locus of points for which the sum of the 
energies deposited in the two scintillators is equal to the incident photon energy, k0. Events 
below this line could be due to a single photon causing detections in the two scintillators, 
whereas events above this line would require a coincidence of two incident photons scattering in 
the target nearly simultaneously. The few points in the upper right-hand region of the plot 
indicate how infrequently this combination occurs. Because the scintillation detectors have 
relatively poor energy resolution (especially the plastic target scintillator), the line dividing these 
two regions is fuzzy. The three oval-shaped event regions corresponding to region 1 of the left-
hand figure nicely illustrate this fact. 
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EXPERIMENT 32a  
Purpose of the experiment 

The purpose of this experiment is to evaluate the accuracy of the kinematic Compton scattering 
formula, equation (32.1). If this equation accurately describes the variation of outgoing photon 
energy versus scattering angle, then Einstein’s theory that electromagnetic radiation can behave 
as though it were composed of discrete, massless particles (quanta, photons) with energies 
E ω=   has received very strong support. Your data will provide evidence to help decide this 
question.  

Procedure 
Once you have familiarized yourself with the setup and electronics, the procedure divides into 
two distinct phases, each described in detail below. 

Detector calibrations 

Do not start the MCA application if the Compton Experiment application is running. Quit the 
Compton Experiment application first. 

Using the MCA application, you will adjust the individual detector high voltages (target and NaI) 
and collect gamma ray calibration spectra using the same sources and the same procedure you 
used for Experiment 30a, among others. Keep the main 137Cs source blocked with lead brick 
during the calibration data collection; use only the various gamma ray sources you have used 
previously in other experiments. 

Apply the high voltages to the two detectors by activating their power supplies. 

To select a particular detector for collecting calibration spectra, you must select the correct MCA 
(MCA1 or MCA2) using the control on the MCA application display, and you must also select 
the button corresponding to that detector on the Coincidence Unit (CU). The other detector’s 
button should be deselected. 

Using a 137Cs calibration source, adjust the detector HV power supply voltages so that the 
0.661 MeV photon full energy peak fits just below channel 500 in the NaI scintillator MCA 
spectrum, and its Compton edge fits just below channel 500 in the target scintillator MCA 
spectrum. With these voltage settings, the scatter plots you collect later will contain all of the 
relevant events. 

Once the detector power supply voltages are properly set, collect and save MCA spectra of the 
various gamma ray sources for later analysis and calibrations of the target and NaI MCA channel 
energies. Make a note of what range of low channel numbers in each detector’s spectra seem to 
consistently contain a significant amount of noise event counts.  
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Record in your lab notebook the known photon energies and your observed channel 
numbers for the various full energy peaks found in each NaI detector calibration spectrum. 

Not many of the calibration sources will provide clean enough Compton edge features to be 
useful for calibrating the target detector. Your NaI detector calibration should be quite 
good, however.  

Compton scattering energy vs. angle data collection 
Once you have collected and saved the calibration spectra for both detectors, quit the MCA 
application. Start the Compton Experiment application. 

Do not start the Compton Experiment application until after you have quit the MCA 
application. 

Push in both buttons on the Coincidence Unit (CU), one button for each of the two detectors. 
Now only coincidence events will be recorded. 

Examine the alignment of the target scintillator with the protractor used to measure NaI detector 
scattering angle. If necessary, consult your TA and adjust the target scintillator position. 

Remove the lead brick blocking the main 137Cs source. Return any calibration sources to their 
storage area. 

Set the NaI detector along the circumference of the protractor at an angle of about 40° and 
carefully record the angle and the distance between the center of the NaI scintillator and the 
center of the protractor. 

Compton Experiment application setup: On the Scatter Plot window, activate the Update Plot 
control, enter ‘50’ in the Set Events/Update control, and Erase the display. On the Compton 
Scattering Control window, adjust the Low Limit channel number for each of the MCA displays 
to just above any significant noise channels you observed during calibration. Erase any displayed 
spectra and activate Acquire. 

After two or three minutes you should see a well-defined full-energy peak in the NaI scintillator 
spectrum. The lower half of the target scintillator spectrum should display a broad peak. These 
features roughly correspond to an oval-shaped locus of events in the scatter plot, corresponding 
to region 1 in the example spectrum shown in the left-hand graphic of Figure 13 on page 16. 
Stop the acquisition and deselect the Update Plot control on the Scatter Plot window. 

If the spectra appear as described above, save the event data. Three files will be created: 
one for each of the scintillator spectra and one for the event scatter plot. This is your first 
data point for the experiment. 

If the spectra do not appear as described, then consult with you TA and the lab instructor to 
troubleshoot the problem. 
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If all seems to be working, reposition the NaI scintillator to a different angle and acquire more 
data. The procedure steps for collecting all events into the scatter plot are as follows:  

(1) Activate the Update Plot control on the Scatter Plot window;  

(2) select Erase on both windows to clear all data;  

(3) select Aquire and collect the event data.  

(4) deselect Acquire and then deselect Update Plot when the data are sufficient;  

(5) save the data. Record the channel numbers of the scintillator peaks along with the 
NaI detector position angle in a table in you lab notebook. 

You need to cover a wide range of angles in order to test the kinematic Compton scattering 
formula. 

Securing the experiment 
Set the HV power supplies for the two detectors to Standby. Block the beam from the 137Cs 
source. Return any calibration gamma-ray sources to their proper storage containers. Quit the 
Compton Experiment application. 

Analysis 
You should include tables of the channel numbers (with uncertainties) both for the scattering 
data (function of θ) and calibration data (function of calibration source photon or Compton edge 
energy). 

Your analysis should include plots of a few representative energy spectra of the plastic (target) 
and NaI scintillators, both of calibration spectra and of Compton scattering spectra. You should 
also include a few representative scatter plots of the Compton scattering data showing plastic 
channel number (x-axis) vs. NaI channel number (y-axis). See the subsection below concerning 
scatter plots in CurveFit and Mathematica®. 

For a representative scatter plot, you should describe the features of the data point densities in 
the plot with an explanation of the processes or scattering geometries which may have generated 
them. 

Rearranging equation (32.1) gives an equation similar to (32.2): 

  2

0

1
2

1 1 2 sin
( ) ek k m

= +
′

θ
θ

  (32.5) 

This equation is a linear relationship between functions of your two experimental quantities θ 
and k ′. The slope of the relation is related to the electron’s rest energy me , and the intercept to 
the γ-ray energy k0 .  
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To test the relationship in (32.5), you must first calibrate the NaI scintillator energy scale 
(channel number vs. energy) using the full-energy peaks in your calibration spectra. This 
calibration may then be used to convert your scattered photon full-energy peaks to energies k ′(θ). 
These experimentally-determined energies will have both systematic (from your calibration) and 
independent random uncertainties. As mentioned in the description of the apparatus, your 
recorded scattering angles θ will also have both systematic and independent, random sources of 
error and their associated uncertainties. Make sure you correctly consider how each of these 
sources of uncertainty will propagate into your analysis. 

Although your calibration spectra for the target scintillator are insufficient to generate a precise 
energy calibration, you can perform a rough calibration of that scintillator. Compare your target 
scintillator energy peak vs. angle data to what you would expect for the outgoing electron kinetic 
energy following a Compton scatter. Are your data consistent with energy conservation by the 
scattering interaction? 

Data analysis Mathematica® notebook 
The Mathematica® notebook Exp32.nb has a few useful functions for manipulating event scatter 
plot data (the *.xy.mca data files saved by the Compton Experiment application). As of this 
writing, the CurveFit functions it defines include: 

KeepXY[ ]:  Uses an interactive dialog box similar to the Keep an X range selection in 
CurveFit. Using it you can select a rectangular region of a scatter plot to keep 
as a new data set. 

RemoveXY[ ]:  Use its interactive dialog box to select a rectangular region of a scatter plot to 
remove from the data set. 

xy2y[ ]: Creates a Y (NaI scintillator) spectrum of the scatter plot events and assigns 
Poisson count uncertainties. 

xy2x[ ]: Creates an X (Target scintillator) spectrum of the scatter plot events and 
assigns Poisson count uncertainties. 

For example, consider the sample scatter plot in the left-hand graphic of Figure 13 on page 16. 
you could use KeepXY[ ] to select only a small rectangular area surrounding the oval-shaped 
region 1 of the scatter plot. Then using xy2y[ ] would give a spectrum containing mostly the NaI 
scintillator full-energy events. Fitting a Gaussian+constant function to this data would provide a 
good estimate of the outgoing photon’s energy. Similarly, fitting the results from using xy2x[ ] on 
the scatter plot data subset could provide a good estimate of the target electron’s kinetic energy. 

Download the notebook 
at: http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Exp_32/  

http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Exp_32/
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Optional investigation 
A possible additional investigation is to use your data to put a bound on the gamma-ray rest 
energy (it should, of course, be zero if photons are massless). Assuming that the photon rest 
energy is very small compared to that of the electron, can you derive a modification to (32.5) 
which includes the lowest order correction for a nonzero photon/electron rest energy ratio? You 
could then use your data to put an upper bound on this ratio. 
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Prelab Problems 

1. Derive equation (32.2) from (32.1). With the electron’s rest energy of 0.511 MeV and ℏc = 
1970 eVÅ, show that C ≈λ  0.024 Å. What is the wavelength (in Å) of a 0.6616 MeV photon? 

2. For an incident photon energy of 0.6616 MeV, use the kinematic Compton scattering formula 
to generate a plot of the expected outgoing photon energy (in MeV) as a function of 
scattering angle θ for θ = 0° to θ = 180°.  

3. The Compton edge energy is defined as the outgoing kinetic energy of an electron following 
a Compton scattering event for which the outgoing photon θ = 180°. What is the Compton 
edge energy for a 0.6616 MeV 137Cs γ-ray? What about for a 0.511 MeV electron-positron 
annihilation photon from 22Na? At what outgoing photon angle θ must a 0.6616 MeV γ-ray 
be scattered for the electron’s kinetic energy to equal the 0.511 MeV photon’s Compton edge 
energy? What is the outgoing photon’s energy in this case? 

4. Show that if an incoming photon is Compton scattered by 90° and then the outgoing photon 
is scattered again by another 90°, then the final outgoing photon has the same energy as that 
from a single 180° scatter of the original incoming photon. Starting with equation (32.5) on 
page 19 is a particularly convenient way to perform this analysis.  

5. Consider the following two scenarios for a possible Compton event detection: 

 

Which region of the scatter plot shown in the left-hand graphic of Figure 13 on page 16, 
region 1, 2, or 3, contains events described by scenario A above? scenario B? 
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EXPERIMENT 32b 
Purpose of the experiment 

In Experiment 32a you evaluate the kinematic Compton scattering relationship, equation (32.1) 
or (32.5). This experiment supplements that result by investigating the dynamics of the photon-
electron interaction. This dynamical relationship was derived from Dirac’s theory by Klein and 
Nishina, resulting in equation (32.4) for the scattering cross section. Your goal is test this 
expression by measuring the Compton scattering rates into various outgoing photon angles. 
Complicating your analysis is the requirement to apply various corrections to your raw rate data 
to account for experimental effects such as detector efficiency and target self-absorption. 

Procedure 
Read completely through each section of the procedure before starting it. Make sure that you 
have a good plan for your data collection, and that you have the measurements you need to 
complete the analysis. 

Electronics setup 

Do not start the MCA application if the Compton Experiment application is running. Quit the 
Compton Experiment application first. 

Start this experiment the same way as Experiment 32a: Leaving the main 137Cs source blocked, 
activate the detector power supplies and use the MCA application to collect spectra from each 
detector. Using a 137Cs calibration source, adjust the HV power supply voltages to limit the 
observed 137Cs spectrum to the first 500 channels in each detector. Remember to select the 
appropriate MCA number in the MCA application and to only select the appropriate button on 
the Coincidence Unit (CU) for the detector to be used. 

There is no need to perform detailed energy calibrations of each detector for this experiment, as 
you are interested in measuring scattering rates. Accurate energy measurements were required in 
Experiment 32a, but not in Experiment 32b. 

Geometry measurements 
In order to calculate absolute area numbers for the differential scattering cross sections, you must 
know the solid angle ΔΩ into which detected photons are scattered. To determine this angle you 
must know the dimensions of the target and NaI scintillators and the distance between them. You 
must also know the distance between the 137Cs source and the target scintillator, along with the 
scintillator dimensions, so that you can use the source decay rate to determine the rate at which 
gamma ray photons enter the target scintillator. 
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Do not start the Compton Experiment application until after you have quit the MCA 
application. 

Compton scattering rate vs. angle data collection 
Once the detector HV power supply voltages are properly set, quit the MCA application, select 
both detector buttons on the CU, and start the Compton Experiment application. 

Accurate rate calculations require accurate acquisition time determinations, so don’t set the Set 
Events/Update control on the Scatter Plot window to too low a value; 150 to 200 should be a 
good number (updating the scatter plot takes time if there are many events in the plot). To ensure 
that all relevant events are included in the plot, you must operate the Compton Experiment 
controls in the following order: 

(1) Activate the Update Plot control on the Scatter Plot window;  

(2) select Erase on both program windows to clear all data;  

(3) select Aquire and collect the event data.  

(4) deselect Acquire and then deselect Update Plot when the data are sufficient;  

(5) save the data. 

Your strategy for selecting scattering angles for your measurements should be different from that 
used in Experiment 32a. Here you are interested in accurately determining the variation in event 
rate with scattering angle, so you need more data in the parameter space where the rate changes 
rapidly with changing angle. Look again at Figure 4 on page 7. The predicted scattering rate is 
very nearly constant for angles beyond about 100°, so few data points should be needed in that 
region. Conversely, angles from 20° to 90° show a rapid change in scattering rate, so your data in 
this region should be much more extensive. The lower the rate, the longer it will take to acquire 
accurate data, so you must also keep this fact in mind as you build up your data set. 

As you change the angle to the NaI detector, carefully determine its position so that you can 
calculate the solid angle ΔΩ into which detected photons are scattered at that nominal θ. 

Securing the experiment 
Set the HV power supplies for the two detectors to Standby. Block the beam from the 137Cs 
source. Return any calibration gamma-ray sources to their proper storage containers. Quit the 
Compton Experiment application. 
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Analysis 
Overview 

You will need a thoughtful analysis to concentrate on the relevant events in your raw data and to 
then properly apply the several needed corrections to your measured scattering rates. Consider 
again the Klein-Nishina formula, equation (32.4), repeated below: 

 0

0 0

22
2sin2

edσ r k k k θd k k k
′ ′   = + −   ′Ω    

 (32.4) 

The purpose of the analysis is to use your experimental data to derive the differential cross 
section’s dependence on the scattering angle θ and then compare your result to that predicted by 
the right-hand side of (32.4).  

For some outgoing direction θ the differential cross section dσ/dΩ|θ indicates the differential 
probability of an incident photon scattering into that angle. Since both the incident photon rate at 
the target and the number of scattering sites (electrons) in the target are constants, the differential 
rate that photons scatter from the target into angle θ should be proportional to dσ/dΩ|θ , at least 
at first glance. The observed rate at the NaI detector when placed at an angle θ, however, is 
influenced by a number of additional effects which require corrections to your raw data. These 
effects are discussed in the following sections. 

Solid angle captured by the detected events 
From the point of view of the photon-electron scattering site in the target scintillator, the cross-
sectional area of the NaI scintillator detector subtends a small solid angle ΔΩD about its 
placement angle θ. The solid angle subtended is given by its cross-sectional area divided by its 
separation from the target squared. Similarly, the target scintillator subtends its own small solid 
angle ΔΩT about the angle θ (as seen from the position of the NaI scintillator), again given by its 
projected cross-sectional area divided by the scintillators’ separation squared. To lowest order, 
the total solid angle captured by the event detection is given by the sum of these two:  

 2( ) /D T D TA A rDΩ = DΩ + DΩ = +   (32.6) 

where the areas AD and AT are the projected cross-sectional areas of the scintillators along the 
angle θ, and r is the distance between them. The scattered photon rate (ignoring other 
corrections, and to lowest order) will then vary as Δσ = dσ/dΩ|θ ΔΩ. The face of the NaI 
scintillator has a diameter of 5.1 cm; the target scintillator dimensions are 1.9 cm wide × 3.6 cm 
high × 3.5cm deep (as seen by the 137Cs source). 

The NaI scintillator should be oriented so that its circular face is normal to the line between its 
and the target scintillator’s centers, so the area it subtends is always equal to the area of its 
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circular face. The target scintillator, however, because of its fixed position and rectangular, box-
like volume, subtends an effective projected area which varies with scattering angle θ. It can be 
shown that its effective area is determined by the product of its height (3.6 cm) and the projected 
length of a diagonal of its base (choose the diagonal which gives the longer projected length 
normal to the direction θ). The common length of these diagonals is given by Pythagoras to be 
4.0 cm; their angles from the target centerline are 28.5°. The projected target area AT to be used 
in (32.6) is then given by: 

 [ ](3.6cm 4.0cm) max sin( 28.5 )TA = × × ± °θ   (32.7) 

This equation means that you must pick the sign of the 28.5° which gives the larger result for AT , 
+ for θ < 90°, − for θ > 90°. 

Example calculation: When the NaI scintillator is positioned at a scattering angle of 60° and at 
a distance of 40 cm from the center of the target scintillator, the projected areas subtended by the 
target and NaI scintillators are 14.3 cm2 and 20.4 cm2, respectively, using (32.7) to calculate the 
target’s projected area. The total solid angle calculated using (32.6) is then 0.022 steradian, about 
0.17% of the unit sphere (4π steradian). Because the aspect of the target scintillator as seen by 
the NaI detector changes with θ, so will the solid angle it subtends. The observed detection rate 
must be divided by the total solid angle ΔΩ to correct for this variation. 

Correct the observed event rate at each θ by dividing by the total solid angle calculated 
using (32.6) and (32.7). 

NaI detector efficiency corrections 
Not all photons which enter the NaI scintillator will be detected. The scintillator’s mass 
attenuation coefficient (APPENDIX C: Mass attenuation coefficients) provides a measure of the 
NaI detector’s probability of detecting an incoming photon. The probability that a photon 
entering the scintillator has an interaction and is detected is given by: 

 ( )/1NaI
dP e−= − ρ µ ρ   (32.8) 

where ρ is the scintillator mass density, μ/ρ is the scintillator total mass attenuation coefficient 
evaluated at the photon’s energy, and d is the depth of the scintillator material, 4.4 cm for the NaI 
scintillator. Table 1 in Appendix C provides the total mass attenuation coefficients for outgoing 
photons from the target scattered into various angles. 

Here’s an example calculation: an incident 137Cs photon (0.6616 MeV) is scattered by angle of 
60°. Using Table 1 in Appendix C, the outgoing photon has 0.402 MeV, and at this energy the 
NaI 20.117cm gm./ /μ ρ =  Appendix C specifies 33.67gm cm/ρ =  for NaI. With these values 
and the scintillator depth of 4.4 cm, the probability of detection given by (32.8) is 0.85, so the 
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observed event rate should be divided by this probability to correct for the NaI detector 
efficiency. 

Correct the observed event rate at each θ by dividing by the NaI detection probability 
calculated using (32.8). If not using the values in Table 1 of Appendix C, then always use the 
total mass attenuation coefficient given by the chart for NaI in Appendix C. 

You must use the total mass attenuation coefficient rather than, say, the coefficient for 
photoelectric absorption only. Except for relatively low-energy photons, the coefficient for 
Compton scattering in the NaI scintillator exceeds that for photoelectric absorption. The events 
which wind up in the full-energy peak in the NaI scintillator are usually due to multiple 
interaction events in the NaI scintillator: Compton scattering followed by photoelectric 
absorption of the outgoing photon. Similarly, multiple Compton scatterings also occur. You do 
not have an accurate way to model the probabilities of these multiple interaction scenarios, and, 
in particular, you cannot predict what fraction of the photons entering the NaI scintillator will 
contribute to its full-energy peak. You can only use the mass attenuation chart to estimate what 
fraction of the photons will undergo some sort of interaction or interactions in the NaI scintillator 
and thus be detected. Only the total mass attenuation coefficient is suitable for this purpose. This 
limitation will become important when deciding which coincidence events in the scintillator 
spectra should be counted and which should be discarded when calculating scattering rates. 

Target scintillator self-absorption and multiple scattering corrections 
A photon scattered by a target electron into the angle θ may suffer another scattering before 
exiting the target scintillator. In this case it will be lost from the set of photons scattered into the 
NaI scintillator positioned at θ. This occasional self-absorption by the target scintillator reduces 
the observed count rate, and you must correct for it: photons scattered a second time in the target 
scintillator away from the NaI angle θ do not result in coincidence detections because they do not 
enter the NaI scintillator. The geometry shown in Figure 14 illustrates the situation. 

Figure 14: Self-absorption in the target 
scintillator occurs whenever an outgoing 
photon which would have reached the NaI 
scintillator positioned at angle θ is scattered 
again before it exits the target scintillator. 
To avoid this fate, the outgoing photon must 
(on average) travel the distance d without 
scattering. The view shown is from above 
the target scintillator.  

To lowest order it is sufficient to consider an incident photon which is scattered near the center 
of the target scintillator volume. It must then traverse the distance d shown in Figure 14 before 

θ

d

3.5 cm

1.
9 

cm
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exiting the target volume, which may be calculated from θ and the scintillator dimensions shown. 
The maximum value of d is 2.0 cm when θ is 28.5° (half the length of the diagonal of the 
rectangular target area shown in Figure 14). To calculate the probability that the photon exits 
along d without suffering an additional scattering we again turn to Table 1 in Appendix C, this 
time using the column for the plastic scintillator. This probability is given by equation (32.9). 

 ( )/
T

dP e−= ρ µ ρ   (32.9) 

Example calculation: again consider a scattering angle of 60°. Using Table 1 in Appendix C, 
the outgoing photon has an energy of 0.402 MeV, and the plastic scintillator has a μ/ρ of 

20.109cm gm/ with a density 31.18gm cm ./ρ =  At 60°, (1.9cm 2) sin 60 1.1cm./ /d = ° =  The 
probability for the outgoing photon to avoid another scattering event is then calculated from 
equation (32.9) to be 0.87. The observed event rate should be divided by this probability to 
correct for target self-absorption. 

Correct the observed event rate at each θ by dividing by the probability calculated using  
(32.9) for the distance d within the plastic target scintillator (Figure 14). Remember to use 
the plastic mass attenuation coefficient from Table 1 in Appendix C. 

Mitigating the effect of multiple scatterings in the target 
Conversely to the problem of target self-absorption, photons initially scattered into directions 
other than toward the NaI detector positioned at θ may be scattered again, this time so that they 
do exit the target toward the NaI detector. These multiply-scattered photons increase the 
observed rate, so events associated with them should not be counted. 

The most straightforward way to recognize these extraneous events is by the energy they each 
deposit in the target scintillator. Multiple Compton scattering caused by a single incident photon 
can deposit a wide range of energies, both above and below that deposited by a single Compton 
scatter into outgoing direction θ. Consequently, these events can show up nearly anywhere on a 
scatter plot (refer to Figure 12 on page 15 and Figure 13 on page 16). The desired, single-
Compton events for angle θ will all deposit the same energy in the target scintillator, namely 

0( ) ( ).T k k′= −θ θ  

Consider again Figure 12 on page 15. Above the scatter plot in that figure is the corresponding 
target scintillator spectrum (histogram). This spectrum exhibits a broad Gaussian peak on a 
somewhat linearly-varying background. This peak is indeed associated with the desired, single-
Compton events, including both full-energy and Compton-only interactions in the NaI 
scintillator. Thus the area of this Gaussian peak gives a count of the desired events (see the 
Prelab Problems). 
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Putting it all together 
For each NaI detector angle θ in your data set, you must calculate your observed count 
rate/steradian, corrected for target self-absorption, NaI detector efficiency, and actual solid angle 
subtended. The Prelab Problems along with the example calculations outlined previously lead 
you through the steps. Your results will be a set of measured count rates/steradian (with 
uncertainties) vs. scattering angle θ (which also has an uncertainty). These rates should then be 
proportional to their corresponding dσ/dΩ|θ  values. Quantitatively compare the variation in 
your measured data with scattering angle θ to that described by the Klein-Nishina theory, 
equation (32.4). You will find it useful to normalize both your measured rates and the Klein-
Nishina cross-sections by dividing by their values at some common, convenient scattering angle, 
say 60° or 90°. 
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Prelab Problems 

1. Given that the fine structure constant α ≡ e2/(4πε0 ℏc) ≈ 1/137, the electron’s rest energy is 
0.511 MeV, and ℏc = 1970 eVÅ, calculate an estimate of the classical electron radius re. 
What is then the electron’s total cross section for Thomson scattering in barns (10–28m2)? 
What is its approximate total Klein-Nishina cross section for Compton scattering of the 
0.6616 MeV 137Cs γ-ray (consult Appendix B, Figure 22 on page 32–B–8)? 

2. The scattering data shown in Figure 12 on page 15 is for 60 .θ = °   Fitting a Gaussian on a 
linear background to the target scintillator count spectrum associated with this data gives the 
results shown below: 

 

Gaussian fit results: 
Peak height (ymax): 8.75±0.43 counts/chan 
Standard deviation (sigma): 56.0±3.2 chan 

 

Given the peak height and standard deviation of the Gaussian, what is the total integrated 
count number it represents, with uncertainty (what is its integrated area)? 

3. Continuing the problem above, now correct the raw count data you have calculated for the 
expected NaI detector efficiency and for target self-absorption. What is the corrected count 
rate with uncertainty if the spectrum acquisition time was 480 seconds? If the separation of 
the scintillators was 40 cm, what is then the count rate/steradian? 
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APPENDIX A: TOTAL AND DIFFERENTIAL SCATTERING CROSS SECTIONS 
In this appendix we examine the concept of the scattering cross section between an incoming 
beam of particles interacting with a set of relatively motionless target particles (in our case 
photons and electrons). The total cross section describes the probability of any successful 
scattering of an incoming particle by a target, no matter what directions the scattered, outgoing 
particles may take, whereas the differential cross section characterizes the probability of the 
scattered particles assuming a particular outgoing set of directions. First we consider the total 
cross section, since it is in many ways the simpler concept. 

Total scattering cross section and the mean free path 
Consider the situation illustrated by Figure 15. A uniform beam of identical particles is incident 
on a very thin volume (infinitesimal thickness dz) containing an array of nearly motionless 
scattering targets (all identical to one another and with number density n). Some small fraction 
dP of the incoming particles will be scattered by the targets in the volume. Because the incident 
particles in the beam are all identical to each other, this fraction dP must be the probability that 
any particular incident particle will be scattered when passing through the target volume. 
Because the volume is of infinitesimal thickness, dP will be proportional to the total number of 
target particles in the volume encountered by the incident beam, which is in turn proportional to 
the target number density times the volume’s thickness: ndz.12 If we call the constant of 
proportionality σ (which must have dimensions of area), then we get 

 dP σ n dz=   (32.A.1) 

 

Figure 15: A beam of identical particles is 
incident on a thin volume containing target 
particles. The volume has infinitesimal 
thickness dz, and the number density of the 
targets within the volume is n. Some of the 
incident particles are scattered by targets in 
the volume. 

 
In the case of a finite volume thickness, assume that N(z) particles in the incident beam have 
penetrated a distance z into the target volume without being scattered. Given the differential 
probability of scattering in (32.A.1), we expect that ( ) (1 ) ( ) (1 ) ( )N z dz dP N z σndz N z+ = − = −  

                                                 
12 The expression ndz is called the differential column density of the target particles, because it describes the number 
of target particles along the depth of the volume per unit area of the volume’s surface facing the incident beam. 
Clearly, the column density has dimensions of particles/area. 
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particles will avoid scattering for an additional distance dz. Thus ( )dN dz σnN z= −/ . 
Integrating, 

 ( ) (0) exp( )N z N σ n z= −   (32.A.2) 

The number of incident particles avoiding a scattering event falls exponentially with distance 
into the volume containing the targets. The length  

 1 ( )λ σn≡ /   (32.A.3) 

is called the mean free path of the incident particles within this volume of stationary target 
particles.13 

The area σ is called the total cross section for scattering of an incident particle by a single target 
particle. It can be interpreted as a small cross-sectional area centered on a target particle and 
oriented normal to the incident beam. If an incident particle’s projected path would pass through 
this area around a target particle, then the incident particle is scattered out of the beam; otherwise 
it remains in the beam of unscattered incident particles. The numerical value of the total cross 
section σ will be determined by the physics of the interaction between the incident particle and 
the target. It will generally depend on the nature and strength of the forces between them as well 
as the relative kinetic energy of the particles as they approach. 

Consider a simple example known as hard sphere scattering. Assume that the incident and target 
particles may be modeled as hard spheres of radii Ri and Rt, respectively. Further assume that 
the incident particle’s projected, undeflected path would bring its center within distance b of the 
target particle’s center (the distance b is called the impact parameter). Referring to Figure 16, if 
b < i tR R+ , then the two particles will collide and therefore scatter; otherwise no scattering will 
take place. The resulting total cross section σ is therefore the area of a circle with radius i tR R+ . 

Figure 16: Hard sphere scattering: the incident and 
target particles are each modeled as spheres. The 
inset shows a view oriented along the path of the 
incident particle. If the impact parameter b is less 
than the sum of particles’ radii (inset, dashed circle 
around the target’s center), then the spheres will 
collide, and the particles will scatter. Thus σ, the 
total cross section for scattering, is given by the 
dashed circle’s area.  

                                                 
13 The mean free path formula (32.A.3) is correct for incident particles moving at speeds much greater than those of 
the target particles (thus, the target particles are relatively stationary). If the particles are all identical and moving 
isotropically within some volume, as do the particles in an ideal gas, then the mean free path of any one particle of 
the gas is 1 2/  of that given in (32.A.3). 

b

2( )i t
σ
π R R
=

+
+

+
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Differential scattering cross section 
The total cross section determines the probability of any sort of scattering caused by the 
interaction of the incident and target particles. The next level of detail is to determine the 
probabilities of scattering into various angles away from the incident particles’ initial path. The 
direction of the path of an outgoing, scattered particle will be described using the spherical polar 
coordinate angles θ and φ (see Figure 17). The differential solid angle dΩ is then defined as a 
small area of a unit sphere (radius ≡ 1, area ≡ 4π) centered about an angular position (θ, φ). 

 

Figure 17: Differential solid angle dΩ into which an incoming particle may be scattered. Incident 
particles enter from the left and scatter from the target. We locate the angular position of the 
differential solid angle using spherical polar coordinates with polar angle θ and azimuthal angle ϕ 
as shown. The fraction of the incident particles which scatter into a dΩ centered at (θ, ϕ) is 
described by the differential cross section dσ/dΩ.  

The infinitesimal, nearly rectangular patch of the unit sphere defining dΩ in Figure 17 has sides 
of lengths |dθ | in the polar direction and |sin(θ)dφ | in the azimuthal direction. The area of the 
patch is therefore: 

 | sin( ) | | (cos ) |d θ dφdθ dφ d θΩ = =   (32.A.4) 

A tiny scattering cross section dσ ≥ 0 is associated with scattering into the solid angle dΩ about 
the direction (θ, φ). In the limit that dΩ becomes infinitesimal, dσ is proportional to dΩ. The 
derivative dσ/dΩ is called the differential cross section for scattering into (θ, φ) and is always 
taken to be nonnegative. Obviously, the total cross section σ should equal the integral of the 
differential cross section over the surface of the unit sphere: 

 
4

2 1 2

0 0 1 0
sin( ) (cos )

π

π π πdσ dσ dσσ d θ dφdθ dφ d θd d d
−

= Ω = =
Ω Ω Ω∫ ∫ ∫ ∫∫∫   (32.A.5) 

The final integral expression in (32.A.5) is often the most useful. If the scattering process is 
expected to have azimuthal symmetry (so that dσ/dΩ is independent of φ), then the integral over 
φ is equal to 2π, and  

 1

1

| 2 (cos ) |

1 ; (cos )2 (cos ) (cos )

d π d θ

dσ dσ dσσ d θd π d θ d θ
−

Ω =

= =
Ω ∫

  (32.A.6) 

dφ
dθ

θ
φ

sin( )d θ dθ dφΩ =
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Since increasing impact parameter b usually results in decreasing the expected polar scattering 
angle θ, we can usually assume that dσ/d(cosθ) ≥ 0 in (32.A.6). In any case, the differential and 
total scattering cross sections should always be nonnegative. Returning to our previous example 
of hard sphere scattering, we assume that the spheres scatter elastically, and that the target 
particle is much more massive that the incident particle. We now calculate the differential cross 
section dσ/dΩ for scattering of the incident sphere into direction (θ, φ). Consider the geometry 
of the scattering event depicted in Figure 18.  

Figure 18: Geometry for elastic, hard sphere scattering 
used to calculate the differential cross section dσ/dΩ. If 
the impact parameter b < Rtot , the sum of the spheres’ 
radii, then scattering will occur into the angle θ = π – 2α. 

 

Clearly, the scattering geometry is symmetric with regard to the azimuthal angle φ, so from the 
second of equations (32.A.6), we need only calculate how the scattering cross section varies with 
cos(θ). Let the sum of the incident and target spheres’ radii be tot i tR R R= + . If the impact 
parameter b is greater than totR , then scattering will not occur; otherwise, assuming for 
simplicity’s sake that the target is too massive to recoil with any significant velocity, the incident 
particle will recoil with the geometry shown, so that 

 
2

sin ( ) ; 2

cos ( ) 2( ) 1
tot

tot

α b R θ π α

θ b R

= = −

∴ = −

/

/
  (32.A.7) 

The final equation above is the result of a simple angle sum formula, or one could just use 
Mathematica® to derive it from the first two equations. Since the total integrated cross section 
for impact parameters less than b is πb2, we can use (32.A.6) and (32.A.7) to get 

 21
4

1
2 (cos ) tot

dσ dbdσ Rd π d θ db= =
Ω

/
/   (32.A.8) 

So, interestingly, for elastic, hard sphere scattering from an immovable target, the differential 
scattering cross section is independent of the outgoing direction (θ, φ).14 Multiplying this 
constant differential cross section by 4π steradians for the total solid angle Ω of the unit sphere 
gives our previous result for the total scattering cross section, 2

totσ πR= , as expected. 

 

 
                                                 
14 This is also the correct result for the differential cross section for elastic, hard sphere scattering between any two 
particles, regardless of mass, if the particles’ center of momentum frame is used to define the angles α and θ. 
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APPENDIX B: THOMSON SCATTERING AND ITS RELATIVISTIC COUNTERPART 

Thomson scattering 
Here we use classical theory to derive the scattering of electromagnetic radiation from an 
unbound (free), charged particle. The assumptions are that: (1) the wavelength of the radiation is 
much larger than the size of the particle; (2) net, average momentum transfer to the particle is 
negligible; and (3) the intensity of the radiation is low enough that the induced velocities of the 
particle are very small. This represents the low-energy limit of Compton scattering of a single 
photon and a free electron, and it was first derived by J. J. Thomson, the discoverer of the 
electron, in a book published in 1906; subsequently this theory has been known as Thomson 
scattering.15 

Assume an unpolarized plane wave with intensity I0 (radiant power per area) propagates in the 
ẑ  direction and is incident on a small particle with mass m and charge q located at the origin. At 
any instant we can resolve the incident radiation into two linearly-polarized components: one 
with electric field oscillations along the x̂  direction, the other oscillating along the ŷ  direction. 
On average, the intensity of each polarization component is (½) I0, and their relative phases vary 
randomly. For the purposes of this analysis we will assume that each polarization electric field 
component xE  or yE  is a sinusoid with amplitude E0 (Figure 19).  

Figure 19: Geometry used to calculate classical, 
Thomson scattering of electromagnetic radiation by a 
charged particle. The incident wave propagates in the 
ẑ direction. Its oscillating field Ex or Ey  (depending on 
the wave’s polarization) then accelerates the particle 
(with mass m and charge q). The oscillating charge 
generates radiation in the direction of the observer 𝓞, 
located in the x-y plane at an angle θ from ẑ . 

 

Now we must consider how electromagnetic radiation is generated by the classical motion of a 
charged particle.16 Looking again at Figure 19, assume an observer sits at position 𝓞 in the x-z 
plane at a distance r from the particle. Let the unit vector r̂  point from 𝓞 toward the charge. 
What then would be the electric field ( )E t



 and magnetic field ( )B t


 produced at position 𝓞 by 

                                                 
15 Chapter XI, §161: “Theory of the secondary radiation,” in Conduction of electricity through gasses, J. J. 
Thomson, 1906. Joseph John Thomson won the 1906 Nobel Prize for his discovery of the electron in 1897. In 1912 
he also discovered the existence of different isotopes of stable (nonradioactive) elements when he separated Neon-
20 and Neon-22 using his invention of the mass spectrometer. 
16 As with most of the ideas introduced in this course, Feynman explains it very clearly and elegantly. See his 
Lectures on Physics, Volume I chapter 28. Our presentation follows his (we refer to this text as Feynman). 
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the motion of the charge? Feynman’s equations (28.3) and (28.4) give our equations (32.B.1) and 
(32.B.2): 
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r  (32.B.1) 

 1ˆ( ) ( ) ( )ret cB t t E t= − ×r
 

 (32.B.2) 

where the retarded time rett  refers to the time at which light (electromagnetic radiation) would 
have had to leave the particle in time to arrive at position 𝓞 at time t, that is ,rett t r c= −  where 
r was the distance of the charge when the light would have been emitted: ( ).retr r t=  The unit 
vector ˆ( )rettr  points in the direction from 𝓞 to the charge at that earlier time, i.e. the apparent 
direction to the charge at time t. Note that all of the positions referred to in (32.B.1) and (32.B.2) 
must be evaluated at the retarded time .rett  As explained in Feynman, the first two terms in the 
equation for ( )E t



 simply represent the “effective” inverse square law Coulomb field produced at 
the observer’s position by the moving charge, and, falling off with distance as r–2, do not 
contribute to the production of electromagnetic radiation by the charge; it is the final term, 
falling off with distance as r–1, which interests us. 

An oscillating electric field of amplitude E0 will produce an oscillating acceleration of the 
particle at the same frequency and with amplitude 2 2

0| |d ξ dt qE m=/ / , where ξ is the particle’s 
distance from the origin, which is assumed to be much smaller than the distance r of the observer 
at 𝓞. Each polarization component xE  and yE  will induce a corresponding acceleration of the 
particle along its axis. From the geometry of Figure 19, at 𝓞 the amplitudes of the accelerations 
of the unit vector r̂ in the ŷ  direction due to yE  and in the x-z plane due to xE  will be 

 
2 2 2 2

2 2 2 2
0 01 1 1 1ˆ ˆ; cos( ) cos( )y y x z x

qE qEd d d d
dt r dt r m dt r dt r m−= = = =r rx q x q   

Using this result, the amplitudes of the corresponding electric and magnetic field components at 
𝓞 are then given by  (32.B.1) and (32.B.2). The intensity of the radiation is proportional to the 
sum of the squares of the electric field component amplitudes, so in terms of the intensities, 

2
0 02 IE ∝  and 2 2

y x z sIE E − ∝+ , where the latter refers to the radiation from the particle 
observed at 𝓞. Thus the scattered radiation intensity at 𝓞 is given by:  

 
22 22 2

2 2
20 0

1 1 1(1 cos ) (1 cos )2 24
s eI q rθ θI r rπε mc

    = + = +         
 (32.B.3) 

As expected, the scattered radiation is at the same frequency as the incident radiation, and its 
intensity decreases as r–2. In the final expression of (32.B.3), we assume that the particle is an 
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electron. The classical electron radius, re, provides a rough estimate of the “size” of an electron 
if one assumes that all of an electron’s rest energy mc2 is due to the electrostatic potential energy 
of its charge:17 

 
2 2

2 15
20 0

2.818 10 m4 4
e

e

e emc rπε r πε mc
−= → = ≈ ×   

Our first assumption upon which the derivation of (32.B.3) is based is that the wavelength of the 
radiation is much larger than the charged particle size, or ≫re. Because re is so tiny, this would 
only require that the incident photon’s energy ≪440MeV, about 103 times the electron’s rest 
energy! In this highly relativistic regime, Thomson scattering certainly must be replaced by a 
quantum mechanical, relativistic theory. The actual limit for Thomson scattering is, of course, 
that the incident photon energy must be ≪mc2, about 0.5MeV for an electron. 

To compare the Thomson result with the Klein-Nishina theory of Compton scattering, we must 
convert (32.B.3) into an expression for dσ/dΩ, the differential cross section for Thomson 
scattering. First note, however, that we can derive the total cross section for Thomson scattering 
by integrating  (32.B.3) over the unit sphere (r ≡ 1),18 giving the ratio of the total scattered power 
to the incident intensity: 

Thomson: 2 2 2
1

0 14

( 1) 8(1 cos ) (cos ) 3
s

e e
π

I r πσ d πr θ d θ rI
−

≡
= Ω = + =∫∫∫  (32.B.4) 

This result for the total cross section for scattering of electromagnetic radiation by a free electron 
was derived by J. J. Thomson in his 1906 book cited earlier (footnote 15). 

To get the differential cross section is easy: dσ  = (dσ/dΩ) dΩ, and from our integration (32.B.4), 
(dσ/dΩ) must be the integrand of the first integral. Therefore, 

Thomson: 
2 2

2 2

0

( 1) (1 cos ) (2 sin )2 2
s e eIdσ r r rθ θd I

≡
= = + = −

Ω
 (32.B.5) 

The final expression in (32.B.5) is useful for comparison to the Klein-Nishina theory. Remember 
that this result is for an unpolarized radiation source (equal amounts of vertical and horizontal 
linear polarizations, averaged over all possible phase relationships between them). In this case 
the scattering cross section is independent of the azimuthal scattering angle φ. 

                                                 
17 NIST listing of the currently-accepted value: https://physics.nist.gov/cgi-bin/cuu/Value?re. 
18 Equivalently, we could integrate the scattered intensity over the surface area of a sphere with radius r centered on 
the source. In terms of the differential solid angle, the differential area of the sphere’s surface is da = r2dΩ. The 
results for the total and differential cross sections will be the same as (32.B.4) and (32.B.5). 

https://physics.nist.gov/cgi-bin/cuu/Value?re
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Relativistic, single photon scattering 

Now we extend our previous result in the most straightforward way possible to include the 
scattering of a high-energy photon by a charged particle (so we are considering a very simplistic 
version of quantum electrodynamics). Such an event may transfer significant amounts of linear 
momentum and kinetic energy to the target, so that the target recoils and the scattered (outgoing) 
photon will have less energy (and a lower frequency). In the photon-target center of momentum 
(CM) frame, however, the incident and scattered photons have the same energy, because the 
scattering is assumed to be elastic (Figure 20).  

 
Figure 20: Geometry illustrating photon-charge scattering in the lab frame and the center of 
momentum (CM) frame. In the lab frame the incoming photon energy (and momentum) is k0, and 
its scattered energy is k ′. The scattering is elastic, so in the CM frame incident and outgoing 
particle energies are the same, and the photon and target particle momenta are always oppositely 
directed with equal magnitudes. The CM frame moves with velocity βCM relative to the lab frame. 

Because in the CM frame the incoming and outgoing frequencies of the light are equal, we 
assume that we can use the completely classical Thomson scattering results of the previous 
section to describe the scattering interaction in that frame. In particular, we assume that an 
incident photon stream, described using the CM frame kinematics of Figure 20, generates an 
oscillating electric field on an array of target particles. The Thomson cross section derivation of 
the previous section then properly describes the induced to incident intensity ratios in the CM 
frame. Our big assumption is that these classically-derived intensity ratios, when interpreted as 
the differential cross section dσ/dΩ as a function of scattering angle, can be used to describe the 
quantum mechanical, single photon to single target particle scattering probabilities in the CM 
frame. This hybrid approach is therefore called a semi-classical analysis: it only becomes 
quantum because we interpret these classical, intensity-based cross sections as describing photon 
scattering event probabilities.  

One must be careful to properly transform the relevant quantities between the lab and CM 
frames. Because an incoming photon as observed in the lab frame may have a kinetic energy 
comparable to or exceeding the target particle’s rest energy, we must use special relativity. In 
order to properly follow the math in this section, the reader should review the relevant sections 
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of General Appendix A: Relativistic Kinematics,19 because we will make use of several of the 
results found there. As in the theory section of the main text, we choose units such that c ≡ 1 and 
ℏ ≡ 1. Thus, for example, both a photon’s kinetic energy and its momentum may be represented 
by its wave number k, an electron’s mass m is represented by its rest energy, 0.511 MeV, and the 
speed of the CM frame relative to the lab frame is expressed using β ≡ v/c. In the lab frame the 
incident photon energy is designated by k0 and the scattered photon by k ′. The lab frame 
scattering angle is θ. The CM frame photon energy is designated by kCM (both incident and 
scattered) and the corresponding scattering angle is θCM (see Figure 20).  

To use the Thomson results, we must calculate the incident radiation intensity in the CM frame, 
ICM. In the lab frame the incident intensity I0 may be interpreted as the product of the photon 
energy k0 and the photon flux n0 (photons per time per area): 0 0 0I n k= . Because the CM frame 
is moving relative to the lab frame, both the incident photon frequency and the photon flux will 
be Doppler-shifted when transformed to the CM frame. Using General Appendix A results (A-
13) and (A-11),  

CM speed: 
0

1
1β m k=
+ /

 (32.B.6) 
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Thomson cross sections calculated in the CM frame, which were derived using incident and 
scattered intensities, must be reduced by the relative intensity factor (32.B.7) when referred back 
to the lab frame to correct for the Doppler shift: 

  CM CM0I σ I σ=   ⟶  CM

CM 0

dσ I
dσ I=  (32.B.8) 

We will need one more relationship derivable from (32.B.6) and (32.B.7): 
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 (32.B.9) 

Next we must find a further relationship between the scattering cross sections in the two frames: 
how a differential solid angle in the CM frame, dΩ CM , is related to its corresponding differential 
solid angle in the lab frame, dΩ. Because of relativistic beaming due to the motion of the CM 
frame (really just velocity addition), a photon scattered into angle θCM in the CM frame will be 
                                                 
19 http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf. 

http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf
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observed in the lab frame to scatter into a different, smaller angle θ (Figure 20); the azimuthal 
angle φ is unaffected by the Lorentz transformation. From (32.A.4),  

 CM CMd dφ
d dφ
Ω

=
Ω

CM CM

1

(cos ) (cos )
(cos ) (cos )

d θ d θ
d θ d θ
=

=  

Transforming an outgoing photon’s 4-velocity with angle θ in the lab frame to angle θCM in the 
CM frame, the corresponding cosines are related by the first of equations (A-12) in General 
Appendix A (that equation’s θ ′ will refer to our scattering angle θ in the lab frame). Thus 

 CM CM
2

2

(cos ) cos 1
(cos ) (cos ) 1 cos (1 cos )

d d θ d θ β β
d d θ d θ β θ β θ
Ω − − = = = Ω −  −

 

Using equation (32.B.6) for β and rearranging (Mathematica® is convenient for this purpose): 

 
[ ]

CM
2

0
2 2

0

1 1 2
(1 cos ) 1 ( ) (1 cos )

d β k m
d β θ k m θ

Ω − +
= =

Ω − + −

/

/
 

The numerator of the final expression above looks suspiciously similar to (32.B.9), and its 
denominator reminds one of the kinematic Compton scattering formula (32.1). Substituting: 

CM vs. lab solid angles: CM
2

0

1
1

d β k
d β k

′Ω +  =  Ω −  
 (32.B.10) 

Now we can put it all together, using (32.B.8), (32.B.7), (32.B.10), and (32.B.5): 

 

CM CM CM

CM CM CM

0

2 2
21 1 (1 cos )1 1 2

e

dσ dσ dσ dσ d dσ
d dσ d dσ d d

β β k r θβ β k

Ω
= =

Ω Ω Ω Ω

′− +     = +     + −     

  

“Spinless” electron scattering: 
0

22
2(1 cos )2

edσ r k θd k
′ = + Ω  

 (32.B.11)  

This, then, is our differential cross section for scattering high-energy photons by electrons, which 
turns out to agree with a much more interesting 1926 derivation by Dirac using his newly-
developed ideas for relativistic quantum mechanics.20 Dirac also used a semi-classical method to 
describe the interactions between the electron and both the incident and induced electromagnetic 

                                                 
20 P. A. M. Dirac, “Relativity quantum mechanics with an application to Compton scattering,” Proc. Royal Soc. A, 
111, 405 (1926): http://rspa.royalsocietypublishing.org/content/111/758/405.article-info. At that time Dirac was still 
a graduate student at Cambridge; he received his Ph.D. the same month his paper was published. See also §14.8 of J. 
D. Jackson, Classical Electrodynamics (3rd ed.), John Wiley & Sons (1998). 

http://rspa.royalsocietypublishing.org/content/111/758/405.article-info
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fields. Because k ′< k0 except when θ = 0, the differential cross section falls rapidly below the 
classical, Thomson value as θ  increases.  

Compton made an heroic attempt in his 1923 paper (footnote 8) to derive the differential 
scattering cross section. He used a more complicated set of relativistic manipulations compared 
to those leading to (32.B.11), and his result differs from ours (and Dirac’s) except at angles of 0° 
and 180°. Figure 21 compares the relative intensities predicted by equation (32.B.11)21 and by 
Compton’s calculations of the scattered radiation from what at the time was thought to be a 
0.56 MeV source (0.022 Å); also included are the measured scattering data from his 1923 paper. 
Dirac noted that scaling Compton’s measured data by a factor of 4/3 brought it into reasonable 
agreement with Dirac’s predicted scattering behavior. 22 

 
Figure 21: Comparison of A. Compton’s 1923 calculation of the scattering cross section (dashed 
line) to that of equation (32.B.11) for 0.56 MeV incident photons. Thomson’s classical theory is 
also included for reference (thin black line). Note that the intensity is plotted using a log scale. Left 
graph: comparison with Compton’s measured intensity data (red circles). Right graph: Compton’s 
measured data scaled by a factor of 4/3, as suggested by Dirac, brings it into good agreement with 
that predicted by (32.B.11) (but see footnote 22). 

Electron spin, pair production 
The previous derivation left out one small but important detail: the electron has a magnetic 
moment generated by its intrinsic angular momentum. Its magnetic dipole interacts with an 

                                                 
21 Equation (32.B.11) gives the probability of photon scattering into various angles. To convert to a ratio of scattered 
to incident intensity, it must be multiplied by the relative photon energy, adding another factor of k ′/k0. This was 
actually the form of (32.B.11) presented by Dirac in 1926. Dirac’s paper compared his theory to that calculated by 
Compton and to the data Compton reported in his 1923 paper. Figure 21 shows our version of that comparison. 
22 Klein and Nishina (discussed in the next section) disputed the claimed characteristics of the radiation Compton 
used for his measured results. In particular, they doubted that the incident radiation had a wavelength of 0.022 Å; 
they thought that it might have had a shorter wavelength. They were probably right: Compton called his source 
“Radium C,” which we now know to be 214Bi, whose dominant γ-ray emission is 0.61 MeV, and not 0.56 MeV (with 
wavelength 0.022 Å). 
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incident photon’s oscillating magnetic field to create an additional scattering mechanism, so the 
result (32.B.11) is incomplete (it would actually be correct for a charged but spinless elementary 
particle, if only there were such a thing!23). The electron’s spin 1/2 is a purely quantum 
mechanical property which can’t be accommodated using the approach of the previous section (it 
might be included using some “fast and loose” hand-waving, which we’ll forego).  

When properly calculated using Dirac’s theory, as did physicists Oskar Klein and Yoshio 
Nishina,24 equation (32.B.11) is modified by the inclusion of an extra term, which, as mentioned 
in the main text, becomes equation (32.4): 

0

22
2(2 sin )2

edσ r k θd k
′ = − Ω  

 → 0 0

0 0 0 0

2 22 2 2
2 2( )2 sin sin2 2

e er k k k r k k kθ θk k k k k k
 ′ ′ ′ ′−     − + = + −      ′ ′       

 

 
Figure 22: Scattering cross section comparisons. Left: Klein-Nishina (red) and equation (32.B.11) (dashed) 
differential cross sections vs. scattering angle for various incident photon energies (in MeV). Right: Klein-
Nishina total scattering cross section vs. incident photon energy. The vertical dotted line is at the threshold 
energy for electron-positron pair production (see text). 

This Klein-Nishina differential cross section increases relative to (32.B.11) for large k0 at large 
scattering angles. They are compared in Figure 22. Also shown in that figure is a plot of the 
integrated, total cross section for Compton scattering as a function of incident photon energy 
(using the Klein-Nishina formula). For low photon energies the total scattering cross section 

                                                 
23 Mesons such as the charged pions might seem to qualify, but they are not elementary particles, being bound 
quark-antiquark pairs. Their composite nature spoils the simple formula (32.B.11). 
24 The history and methodology of their derivation is examined in detail by Yuji Yazaki, “How the Klein–Nishina 
formula was derived: Based on the Sangokan Nishina Source Materials,” Proc. Japan Acad. B, 93, 399 (2017): 
https://doi.org/10.2183/pjab.93.025.  
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approaches the Thomson value of (8π/3) re

2. Decreasing with increasing energy, the total cross 
section for 10 MeV photons is approximately 10% of its value for 0.1 MeV photons. 

For incident photons with energies much higher than 1 MeV another interaction competes with 
Compton scattering: pair production. If an incident photon has an energy higher than 4 times the 
electron rest energy, it can undergo an inelastic collision with an electron, using the energy of the 
collision to create an electron-positron particle pair to accompany the electron (the energy 
threshold for pair production is given by General Appendix A, equation (A-17); see footnote 19). 
Although in a solid material (such as a scintillator crystal) pair production is much more likely to 
be due to a photon’s interaction with an atomic nucleus (because of its greater electric charge and 
much greater mass), it can still occur during a collision with an electron, especially at very high 
photon energies (100’s of MeV). In these cases simple Compton scattering is quite unlikely. At 
still higher energies, heavier particle-antiparticle pairs may be created.  
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APPENDIX C: MASS ATTENUATION COEFFICIENTS 

Summary Data 
Compton scattering an incident 137Cs photon (0.6616 MeV) through the angles specified in the 
first column of the following table results in an outgoing photon with the listed energy, as 
determined using the Compton scattering formula, equation (32.1). Using this energy value, the 
total mass attenuation coefficients for the NaI and Plastic scintillators are determined from the 
mass attenuation coefficient charts on the next pages of this appendix. 

 

Table 1  
Total Mass Attenuation Coefficients 

θ 
(deg) 

Energy 
(MeV) 

NaI μ/ρ 
(cm2/gm) 

CH2 μ/ρ 
(cm2/gm) 

20 0.614 0.081 0.091 
30 0.564 0.086 0.095 
40 0.508 0.094 0.099 
50 0.452 0.104 0.104 
60 0.402 0.117 0.109 
70 0.357 0.133 0.114 
80 0.320 0.152 0.119 
90 0.288 0.175 0.123 

100 0.263 0.202 0.128 
110 0.242 0.232 0.132 
120 0.225 0.263 0.135 
130 0.212 0.295 0.138 
140 0.201 0.324 0.140 
150 0.194 0.350 0.142 

 

The density of Sodium Iodide (NaI) is 33.67gm cm/ρ = . The density of plastic (CH2) is 
31.18gm cm/ρ = . 

 

Refer to Appendix B of the Experiments 30a and 30b notes for details on how to interpret the 
charts: http://www.sophphx.caltech.edu/Physics_7/Experiment_30a_and_30b.pdf. 

 

http://www.sophphx.caltech.edu/Physics_7/Experiment_30a_and_30b.pdf
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Charts 

 

ρ = 3.67 gm/cm3 
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ρ = 1.18 gm/cm3 


	INTRODUCTION
	THEORY
	Characteristics of Compton scattering
	Kinematics: the Compton scattering formula (Experiment 32a)
	Dynamics: the Klein-Nishina formula (Experiment 32b)
	Scattering cross section
	Klein-Nishina scattering cross section


	THE APPARATUS
	Overview: capturing Compton events
	Pulse processing electronics
	Software
	MCA application
	Compton Experiment application

	Interpreting scatter plots

	EXPERIMENT 32a 
	Purpose of the experiment
	Procedure
	Detector calibrations
	Compton scattering energy vs. angle data collection
	Securing the experiment

	Analysis
	Data analysis Mathematica® notebook
	Optional investigation

	Prelab Problems

	EXPERIMENT 32b
	Purpose of the experiment
	Procedure
	Electronics setup
	Geometry measurements
	Compton scattering rate vs. angle data collection
	Securing the experiment

	Analysis
	Overview
	Solid angle captured by the detected events
	NaI detector efficiency corrections
	Target scintillator self-absorption and multiple scattering corrections
	Mitigating the effect of multiple scatterings in the target
	Putting it all together

	Prelab Problems

	APPENDIX A: TOTAL AND DIFFERENTIAL SCATTERING CROSS SECTIONS
	Total scattering cross section and the mean free path
	Differential scattering cross section

	APPENDIX B: THOMSON SCATTERING AND ITS RELATIVISTIC COUNTERPART
	Thomson scattering
	Relativistic, single photon scattering
	Electron spin, pair production

	APPENDIX C: MASS ATTENUATION COEFFICIENTS
	Summary Data
	Charts

	Word Bookmarks
	ZEqnNum910238
	ZEqnNum344246
	ZEqnNum151669
	ZEqnNum358421
	ZEqnNum729197
	ZEqnNum954097
	ZEqnNum296363
	ZEqnNum681365
	ZEqnNum128266
	AppA
	ZEqnNum113125
	ZEqnNum499483
	ZEqnNum571180
	ZEqnNum467181
	ZEqnNum640318
	ZEqnNum309172
	ZEqnNum195976
	AppB
	ZEqnNum517857
	ZEqnNum133842
	ZEqnNum373940
	ZEqnNum340222
	ZEqnNum550774
	ZEqnNum567598
	ZEqnNum473092
	ZEqnNum582537
	ZEqnNum167356
	ZEqnNum360441
	ZEqnNum963476
	AppC
	NaIMassAtten


