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INTERACTION OF GAMMA RAYS WITH MATTER 

INTRODUCTION: NUCLEAR DECAY AND GAMMA RAY PRODUCTION 

Many of the experiments in Physics 7 study radioactive decay processes in atomic nuclei and the 

interaction of nuclear emissions with matter. In experiments 30a and 30b we will learn how to 

use a scintillation detector (a powerful tool for the study of the spectra of high-energy photons) 

and will become familiar with commonly-observed nuclear decay processes. Experiment 30a is a 

required experiment for Physics 7 and is a prerequisite for many of the other experiments; it will 

be the first experiment you perform. Experiment 30b continues the investigation of the 

interaction of gamma rays with matter and may be completed later in the term.  

Nucleons, nuclear states, and nuclear forces 

An atom’s nucleus is a bound state of several nucleons — protons and neutrons — each of which 

has a rest energy of approximately 0.94 GeV, over 1800 times that of an electron.0F

1 The total 

number of nucleons in a nucleus is called its atomic mass (or atomic weight) and will be denoted 

by the symbol A. The number of protons in a nucleus is called the nucleus’s atomic number and 

is denoted by the symbol Z. Protons are observed to have an electric charge which cancels that of 

an electron to at least 21 decimal places, whereas neutrons are observed to carry a net electric 

charge of no more than 10–21 that of the proton.2 The total electric charge of a nucleus is thus 

equal to Ze, with the SI value of e defined (in 2019) to be exactly 1.602176634×10−19 coulombs. 

Nuclei with the same Z but different A are called isotopes and are denoted as in the following 

examples: 

 133Cs 137Cs 137Ba 

The element (cesium or barium in the above examples) corresponds to the proton number Z; the 

total number of nucleons A is given by a numeric superscript prefix. Occasionally the atomic 

number is included as a subscript, as in 57

26 Fe . 

Historical notes: the electron was discovered by J. J. Thompson at Cambridge, UK, in 1897; the 

nucleus by Ernest Rutherford, Hans Geiger, and Ernest Marsden in 1911 at the University of 

Manchester, UK. Thompson then went on to discover the existence of different nuclear isotopes 

 

1 Energies will be expressed in electron volts (eV, 1.6×10−19 joule), with keV = 103 eV, MeV = 106 eV, GeV = 109 

eV, etc. A particle’s mass will be stated as its rest energy: mc2, where m is the particle’s rest mass. Although in the 

text we may talk of a particle’s mass, we will really mean its rest energy (in eV). 

2 The cancellation of the proton and electron charges is currently assumed to be exact in the SI system of 

measurement and in nearly all acceptable theories of fundamental physics, although this is actually a most nontrivial 

statement about the world. Charge is also considered to be a Lorentz invariant, so that it has the same value in all 

reference frames. Modern experimental tests of the charge neutrality of bulk matter were reviewed by Unnikrishnan 

and Gillies, http://dx.doi.org/10.1088/0026-1394/41/5/S03.  

http://dx.doi.org/10.1088/0026-1394/41/5/S03
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(of neon) in 1913. Not to be outdone, Rutherford discovered (and named) the proton in 1917. By 

1929, research on nuclear spin at Caltech (by Franco Rasetti) had demonstrated that theories of 

the nucleus were incomplete, and in 1932 James Chadwick discovered the neutron at Cambridge. 

Nucleons are fermions, each with spin ½, and as such obey Pauli exclusion among the states 

occupied by identical particles (proton-proton or neutron-neutron), analogous to the arrangement 

of an atom’s electrons.  

Recall that atomic electrons (also fermions) are found to occupy any of several different energy 

levels and orbitals. The lowest energy configuration of an atom’s electrons is its ground state, 

and other configurations result in excited atomic states. Excited atomic states will eventually 

transition (“decay”) in one or more steps to the atom’s ground state, usually by the emission of 

photons. The allowable energy levels of the atom’s outermost electrons (“valence” electrons) are 

typically separated by energies of a few eV (give or take an order of magnitude). Because 

hc= 1240 eV nm, transitions among these states involve near infrared to ultraviolet photons 

(1000’s of nm to 100nm wavelengths). On the other hand, the inner shell electrons of all but the 

lightest atoms are much more strongly bound, resulting in transition energies of 103–105 eV (1 to 

100’s of keV). Photons in this energy range are called x-rays.  

Nuclear structure is analogous to but much more complicated than this atomic electron structure: 

nucleons are arranged in various levels to determine a nuclear state. Excited nuclear states can 

also decay by the emission of photons (among other processes). Because an atomic nucleus is so 

much smaller than an atom (~10−5Å vs. ~1Å), quantum kinematics (i.e. the uncertainty 

principle) demand that such transitions will often involve much higher energies than do atomic 

transitions, typically 10’s to 1000’s of keV. Photons emitted during nuclear transitions are 

termed gamma rays or γ-rays. Named by Rutherford, nuclear γ radiation was discovered by Paul 

Villard in 1900 in Paris. Unfortunately, “γ-ray” is often used to refer to any high-energy photon 

(energy above 100 keV or so), regardless of its origin. In Physics 7 we will be more specific, 

however, and consider γ-ray photons to be produced only by a nuclear transition, so that, for 

example, an 87 keV photon produced by a lead atom electron transition is an x-ray, whereas a 14 

keV photon produced by a nuclear transition in 57Fe is a γ-ray, even though it has a lower energy. 

The nucleons themselves are actually composite particles each composed of 3 quarks. The 

quarks are bound together by the strong force (or color force), which is a couple of orders of 

magnitude greater than the Coulomb force within a nucleon (distances <~ 1fm= 10−5Å, also 

called a fermi).  The 3-quark nucleons, which are color-neutral, can then bind together to form a 

nucleus by a much-weakened remnant of the strong field, analogous to the van der Waals 

Coulomb force which can very weakly bind electrically-neutral noble gas atoms together. This 

inter-nucleon force is termed the “nuclear force” or “residual strong force,” and it falls off 

exponentially with distance, becoming negligible at ranges beyond a few fermi. The first 

reasonably successful theory of the nuclear force was formulated by Hideki Yukawa in 1935 at 

Osaka University, Japan, but a useful theory of the strong force and the internal structure of 

nucleons had to wait for the 1970’s. That theory, quantum chromodynamics, has a “strong” 



 30 – 3 3/26/2024 

 

connection to Caltech: the contributions of Murray Gell-Mann, Richard Feynman, and David 

Politzer immediately come to mind. 

Uncertainty principle considerations suggest that each nucleon, when confined to the nuclear 

volume with radius ~1 fermi, must have a kinetic energy of ~10–20 MeV and a speed of ~0.2 c.  

Additionally, the repulsive Coulomb force between two close-packed protons adds a potential 

energy of another 12 MeV (6 MeV per proton).3 Clearly, the force between nucleons must result 

in an attractive potential large enough to more than balance these energies and generate the 

observed nuclear bound states — energies a million times greater than the 13.6 eV binding 

energy of the hydrogen atom.  

The attractive nuclear force between a pair of bound nucleons is approximately independent of 

whether either one is a proton or neutron but is strongly dependent on their separation and the 

orientation of their spins (inherent angular momenta). The proton-neutron pair of the small 

deuterium nucleus (“deuteron”), for example, has a net nuclear binding energy of 1.1 MeV per 

nucleon, showing that the nuclear force between them results in an attractive potential energy 

about 10% greater than their kinetic energies. Replacing the deuteron’s proton with a neutron in 

this case, however, keeps them from binding together: Pauli exclusion and quantum kinematics 

of the two identical neutrons prevent them from finding a state compact enough for the nuclear 

force to bind them. Two protons would fare even worse because of their added electrostatic 

repulsion. Add a proton to a neutron pair or a neutron to a proton pair, however, and a strong net 

nuclear attraction is the result — 3

1H  (tritium) in its ground state has a binding energy of 

2.8 MeV/nucleon, and 3

2 He  is a stable isotope with a net binding energy of 2.6 MeV per nucleon. 

Add yet another nucleon, and 4

2 He  achieves an especially strong total nuclear force, resulting in 

a binding energy of over 7 MeV/nucleon. This value turns out to approach those of the heavier 

naturally-occurring isotopes: 7 to 9 MeV/nucleon (except lithium).  

Beta decay 

One more fundamental force of nature is important for our understanding of the nucleus: the 

weak force, which is responsible for the great majority of natural radioactive decay processes. 

The weak force is the only known interaction which can change the nature of an elementary 

particle — it can change an electron into a neutrino (and vice versa) or a quark into one of a 

different type (called “flavor”). The archetypal change mediated by the weak interaction is the 

spontaneous decay of a free (isolated) neutron into a proton, electron, and antineutrino — a 

decay whose half-life (median lifetime) is a little over 10 minutes. Within a nucleus the weak 

interaction can also convert a proton to a neutron, either by (1) utilizing an inner-shell atomic 

electron, converting it into a neutrino, or (2) creating a positron (the electron’s antiparticle) and a 

neutrino. In all cases, of course, the daughter products’ total rest energy must be no more than 

 

3 See the first 30a Prelab problem for how to calculate these estimates. 
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that of the parent so that the process is energetically favorable (in the case of the free neutron, the 

difference is only about 0.08%). Each of these processes is a form of beta decay, named after the 

emitted β-radiation (electrons or positrons) investigated by Rutherford and Henri Becquerel 

circa 1899–1900. Because beta decay is by far the most common process which modifies the 

nucleus, and it does not change the nucleus atomic weight A, nuclei with the same A can usually 

be considered as different states of essentially the same underlying system. The nucleus resulting 

from beta decay is often left in an excited state; when it decays to its ground state γ-ray photons 

are usually emitted. These beta decay processes and the relevant nuclear energy levels for the 

several radioactive γ-ray emitters we have in the lab are illustrated by the diagrams in this 

document’s APPENDIX A: Nuclear beta decay diagrams. 

Consider this relatively simple example of such a process: the decay of 60

27 Co  to 60

28 Ni  described 

by the decay diagram shown in Figure 1. The process begins with the beta decay of a neutron in 

the cobalt nucleus. The weak interaction 

converts one of the neutron’s two down quarks 

into an up quark, changing that nucleon into a 

proton. That interaction also creates an 

electron and a companion antineutrino which 

together carry away both the energy (mass) 

difference and the electric charge difference 

between the original cobalt nucleus and that of 

the daughter nickel nucleus. This step is 

indicated in the diagram by the “β−” diagonal 

arrow. The “Q” value of this step indicates the 

maximum kinetic energy which the outgoing 

electron (the “beta particle”) could carry. 

Usually the electron will have a significantly 

lower kinetic energy, the remainder being 

carried away by the antineutrino (which, by 

the way, is not electrically charged).  

The resulting nickel-60 nucleus has not yet 

reached its ground state, however. It does so in two steps, each resulting in a photon emission (γ-

ray). Each intermediate-state half-life is indicated in Figure 1 (both are a fraction of a 

picosecond) as well as the emitted photon energies (1.17324 and 1.33252 MeV). Also indicated 

in the diagram are each state’s angular momentum and parity quantum numbers (5+, 4+, etc.).  

The half-life of the cobalt-60 beta decay is 5.2714 years. In this time, on average, half of a 

population of cobalt-60 nuclei will have undergone beta decay to become nickel-60; each 

successive period of 5.2714 years reduces the remaining population by another fact of 2. 

 
Figure 1: The radioactive decay of Cobalt 60. 
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SCATTERING AND ABSORPTION OF HIGH-ENERGY PHOTONS BY MATTER 

In these experiments you will study high-energy photons by observing the reaction products as 

the photons interact with a solid material object: your detector. The detector you will use for this 

experiment is a scintillator attached to a photomultiplier tube. The two scintillator materials you 

will use are sodium iodide (NaI) and, in Experiment 30b, an acrylic plastic (C5O2H8). As we will 

discuss, these detectors work by converting energy from a high-energy photon into a flash of 

visible light which is detected by the photomultiplier. 

The γ-ray photons we will use will typically have energies on the order of 1MeV. Their 

wavelengths are much smaller than the size of an atom: 

 6 212.4 KeV Å 10 eV 10 Åhc E −=   

As a result, such a γ-ray photon does not see a solid material as a continuous medium or even a 

collection of atoms; it sees even the densest of materials as a vacuum containing hard particles: 

mostly electrons with the occasional nucleus. We can analyze the interaction of a high-energy 

photon with matter as a succession of interactions with individual electrons or nuclei. The 

exception to this general rule is an inner electron of a heavy atom, which can interact with a 

high-energy photon as a resonant absorber rather than as a simple particle. The radius of an inner 

electron orbit in an atom with atomic number Z is approximately 0.5Å ,Z  and its binding 

energy is roughly 2 14eV,Z   so for 30Z   these inner electron orbits have compact sizes and 

have energies approaching the lower end of the γ-ray photon range. 

Because of these considerations, the two main processes by which γ-rays interact with matter are 

Compton scattering and photoelectric absorption (for energies up to 1 or 2MeV). A third 

process, pair production, occurs if the photon has an energy greater than twice the electron rest 

energy (~1MeV), and this becomes the dominant process above around 10MeV (this also 

depends strongly on the Z of the target atoms). In what follows we will discuss these three 

processes in more detail. Most of this discussion assumes some familiarity with the relativistic 

kinematics described in detail in the Ph7 website’s general appendix Relativistic Kinematics. 

Refer to the appendix Cross Sections for the definitions of the differential and total cross section. 

These symbols will be used in the following sections: 

k0 , k incident and scattered photon energies ( )hc  =  or momenta  

me electron rest energy 0.511 MeV=  (i.e. taking 21; )e ec m c m →   

re classical electron radius 2 5
0(4 ) 2.82 10 Åee m −= =    

σe Thompson (classical) electron cross section 2 25 2(8 3) 6.65 10 cmer −= =    

α fine structure constant 2
0(4 ) 1 137e c=   

 

http://sophphx.caltech.edu/Physics_7/Experiment_Notes/Appendix.Relativity.pdf
http://sophphx.caltech.edu/Physics_7/Experiment_Notes/Appendix.Cross_Sections.pdf
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Compton scattering 

Compton scattering is the elastic scattering (or collision) of a high-energy photon with a single 

charged particle (an electron in our case) as shown in Figure 1. The energy of the outgoing 

photon scattered by a free electron is given by equation (30.1) (see General Appendix A, pp A-

10 to A-11). 

  
Figure 2: Compton scattering of a photon by an initially stationary particle. This figure is from 
Relativistic Kinematics. 

Compton scattering formula 
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The outgoing electron kinetic energy following a Compton scattering event is 0 .eT k k= −  

Because the photon and electron rest masses differ, the incoming photon cannot transfer all of its 

kinetic energy to the target electron, even in a direct (head-on) collision (unlike the case of a pair 

of colliding billiard balls). The maximum energy transferable to the electron is called the 

Compton edge energy (Tedge) and is derivable from equation (30.1) when 180°: =    

Compton edge energy 0

0

1
2
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T

m
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+

  (30.2) 

The differential cross section to scatter the photon by angle θ is given by the Klein-Nishina cross 

section, equation (30.3), first derived jointly by Oskar Klein and Yoshio Nishina in 1929. 

Integrating this formula over solid angle Ω results in the total cross section plotted in Figure 2. 
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http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf
http://sophphx.caltech.edu/Physics_7/Experiment_Notes/Appendix.Relativity.pdf
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Figure 3: The integrated, total Klein-Nishina cross 

section for Compton scattering as a function of the 

incoming photon energy (see (30.3)). The total cross 

section is scaled by the Thompson scattering electron 

cross section, σe. In the low energy limit the cross 

section approaches this classical value given by 

Thompson scattering theory, presented in Appendix B 

of the Experiment 32 notes Compton Scattering. 

 

Photoelectric absorption 

Photons cannot be absorbed by single electrons in the process: 

 

This absorption cannot conserve both momentum and energy unless *M M  (see Relativistic 

Kinematics, pp A-7 to A-8). Since an electron is an elementary particle, its rest energy cannot 

change, and this condition cannot be satisfied. A composite object such as an atom or nucleus, 

however, has internal degrees freedom which can absorb the extra energy of the collision, so that 

* ,M M  and both momentum and energy can be conserved. In the case of a high-energy 

photon, photoelectric absorption by an atom results in the ejection of an atomic electron from the 

atom. The combined energies and momenta of the escaping electron and the recoil of the ionized 

atom provide for energy and momentum conservation in the process. Usually an inner electron is 

ejected by this process, and the atom (now a positive ion) emits several ultraviolet (UV) and x-

ray photons as its remaining electrons cascade downward to fill the atom’s vacated electron state 

(this emission process is known as fluorescence). Figure 3 shows this process. 

k0 (MeV)

σ
K

-N
 /
σ

e
p k=k

M *M

Product:Collision:

http://sophphx.caltech.edu/Physics_7/Experiment_32.pdf
http://sophphx.caltech.edu/Physics_7/Experiment_Notes/Appendix.Relativity.pdf
http://sophphx.caltech.edu/Physics_7/Experiment_Notes/Appendix.Relativity.pdf
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Figure 4: Photoelectric absorption of a high-energy photon is a resonant process involving one of 
the innermost electrons in a heavy atom. The electron is ejected from the atom; subsequent 
transitions of less tightly bound electrons result in the emission of UV and x-ray photons. The total 
momenta and kinetic energies of the ejected electron and recoiling ion match that of the incoming 
photon, so its absorption is kinematically allowed. 

The absorption of the photon by an atom is, in a sense, a resonant process (analogous to the 

driven harmonic oscillator of Physics 6, Experiment 2) with a characteristic frequency associated 

with the binding energy 
bindE  of the atomic electron: 

bind .E =  For γ-ray photons it is the 

innermost electrons (the K-shell) which have binding energies closest to the photon energy, so 

these electrons are most likely to be involved (as long as bind 0 ).E k  Because of this resonant 

behavior and the fact that transfer of momentum to the nucleus is required, this process has a 

very strong Z dependence, typically 5 ,Z  and a very strong dependence on the γ-ray energy, 

approximately 3
0k −  as it approaches bindE  for a particular electron shell from higher energies. 

As 0k  decreases through bindE  there is an abrupt decrease in the photoelectric cross section 

(called an absorption edge), since the photon now doesn’t have sufficient energy to ionize that 

particular electron. Each electron shell (K, L, M, etc.) in the atom has an absorption edge 

associated with its bind.E  For 0k  well above the K-edge energy of an atom but well less than 

mec
2, Leo1F

4 section 2.7.1 gives equation (30.3) as an approximate expression for the photoelectric 

absorption cross section. 

 

7/2
2

4 5
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4 2 e
photo e
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k
  

 
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 
  (30.4) 

Pair production (Experiment 32b) 

The process of pair production involves the conversion of a high-energy photon into an electron-

positron (particle-antiparticle) pair (see Figure 5). As with photoelectric absorption, however, 

this process cannot occur in empty space because momentum conservation is violated: the 

outgoing particle pair has a total momentum rest-frame, but a lone, incoming photon does not. 

Thus we need a nearby nucleus to provide a third particle which can be used to conserve 

 

4 Leo, Techniques for Nuclear and Particle Physics Experiments (2nd revised ed., Springer-Verlag: 1987, 1994). The 

lab library has several copies. We refer to this text as Leo. 

k

M

−

M+

e−
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momentum. This momentum transfer is accomplished through the Coulomb interaction between 

the outgoing pair and the nucleus, so the cross section for pair production turns out to be 2Z  

(Leo 2.7.3). Of course, we must have the incoming photon energy 2
0 2 1 MeVek m c   or pair 

production is precluded by energy conservation (see General Appendix A for a more careful 

derivation of the threshold energy). As 0k  increases above the threshold, the cross section for 

pair production increases dramatically. Photons with energies exceeding 100MeV can produce 

heavier particle-antiparticle pairs. 

 

Figure 5: Pair production by a high-energy photon interaction with an atomic nucleus M. If the 

incoming photon energy is great enough, the photon may decay into a particle-antiparticle pair. 

In a solid object such as a scintillator, the positron produced in such an interaction will 

eventually lose its kinetic energy through collisions with atomic electrons. It will then bond with 

an electron of the solid, and the pair will quickly annihilate, creating two or more high-energy 

photons. Interestingly, both the electron-positron pair production and annihilation processes are 

intimately associated with photon-electron Compton scattering — the modern, highly-successful 

theory of quantum electrodynamics demonstrates that at a deep, fundamental level, these three 

interactions are manifestations of a single, fundamental process describing the interaction of 

charged particles with electromagnetic fields. 
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http://www.sophphx.caltech.edu/Physics_7/General_Appendix_A.pdf
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THE APPARATUS: A SCINTILLATION GAMMA RAY SPECTROMETER 

 

Figure 6: A scintillation gamma ray spectrometer system. The scintillator and photomultiplier are 

optically coupled and shielded from external light sources. Often the high-voltage power supply 

and the multichannel analyzer electronics are integrated into a single unit with a computer control 

and data display interface. 

The setup you will use for experiments 30a and 30b is outlined in Figure 6, a block diagram of a 

typical high-energy photon spectrometer system. It uses a scintillation detector feeding a 

Multichannel Analyzer (MCA) being used in its pulse height analysis mode.  

Detection of the high-energy photon takes place when the photon interacts with an atom in the 

scintillator through one of the processes discussed previously and transfers some or all of its 

energy to one or two electrons (and, possibly, a positron). These high-speed, charged particles 

quickly and efficiently lose their kinetic energy through collisions with other electrons in the 

scintillator in a cascading reaction (involving UV and even x-ray generation as atomic electrons 

fall into lower levels once occupied by electrons knocked out of many atoms). Very quickly, the 

initial energy deposited by the high-energy photon is distributed among many thermalized 

electrons and their parent ions. The initial electron’s kinetic energy has been converted into the 

total binding energy of these electron-ion pairs.5 

The scintillator material is designed so that as the electron-ion pairs recombine, many visible-

light photons are generated. These photons are directed toward the attached photomultiplier tube, 

which converts this flash of light (due to the recombination energy release) into a pulse of 

current. In a well-designed scintillator the number of these visible-light photons will be 

proportional to the energy deposited by the original, high-energy photon’s interactions. The total 

charge transferred by the current pulse output from the photomultiplier should thus also be 

proportional to the deposited energy, so a spectrum of energy deposited by a high-energy photon 

 

5 These slow-moving electrons occupy the lower states in the scintillator material’s conduction band. The missing 

electrons from the parent atoms form holes in the material’s valence band. The energy gap between the conduction 

and valence bands represents the binding energies of the ion’s missing electrons. 
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source may be constructed by the system electronics. Let’s examine the parts of the apparatus: 

Source:  A small amount of γ-ray emitter sealed in a plastic rod. For these experiments the 

emitter activity is in the μCurie range (~104 Becquerel, or decays/sec). 

Scintillator:  A transparent, solid crystal or piece of acrylic plastic material designed so that a 

high-energy photon interacting with the atoms in the material will deposit energy which is 

efficiently converted into a flash of visible light. The lab has two different scintillator materials: 

Sodium iodide crystal (NaI):  The light output is a pulse with a decaying exponential tail, 

0 exp( ),I I t = −  with time constant τ of about 0.25μs. 

Plastic scintillator:  These scintillators are much faster than NaI, with all of the light coming 

out in a very short burst. The photomultiplier current output width is a few nanoseconds and 

it is most often determined by the photomultiplier and not the plastic scintillator. 
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Figure 7: A photomultiplier tube attached to a scintillator. The potential difference between 

successive dynodes in the tube accelerates an electron so that when it strikes the next dynode it 

can knock out two or more electrons, and they are then accelerated toward the subsequent 

dynode. Depending on the voltage applied to the tube, the final anode may receive from 104 to 

107 electrons for each electron emitted by the photocathode. 

Photomultiplier: Figure 7 shows a sketch of a scintillator coupled to a photomultiplier tube. The 

photomultiplier’s main parts and their purpose are the following: 

Photocathode:  This is a very thin film that converts, through the photoelectric effect, some 

of the incident optical photons into electrons (the efficiency for conversion is around 15%).  

These photoelectrons are accelerated and focused into a small opening just in front of the 

first dynode. 

Dynodes:  These do the actual electron multiplication.  When an electron with kinetic energy 

of the order of 200 eV strikes a dynode, around three electrons are ejected by the impact. 
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These secondary electrons are again accelerated and subsequently strike the following 

dynode. The gain of a photomultiplier is then given by 0 ,ng g=  where 
0g  is the gain per 

dynode and n the number of dynodes.  For the devices that you will use 
0 3g   and 10,n =  

therefore 510 .g   The gain 
0g  is a strong function of the high voltage applied to the 

photomultiplier, so you will adjust the high voltage applied across the dynode array to set the 

desired photomultiplier gain. 

Anode: This final surface collects all the electrons from the last dynode and routes them to 

the photomultiplier output in the form of a pulse of current. 

High Voltage (HV) Power Supply:  The photomultiplier tube requires a high voltage (on the 

order of 1000 volts) for proper operation. Since the photomultiplier gain is a sensitive function of 

the high voltage, this supply must be well-regulated for the system to have stable gain. The 

Experiment 30 setups have a HV power supply which is integrated with the MCA electronics 

and is controllable using the MCA software. Other experiments have detectors powered by a 

separate, external HV supply. The voltage in this case must be adjusted using the controls on the 

HV supply itself. 

Preamplifier and Filter/Amplifier:  The output from the photomultiplier is a pulse of current. 

The total charge in the current pulse is proportional to the number of electrons ejected by the 

photocathode, which is determined by the energy deposited in the scintillator by the incoming 

photon. The current pulse is amplified and integrated by a current integrating preamplifier, 

followed by a high-gain filter/amplifier whose output is a voltage pulse with peak amplitude 

proportional to the integrated charge from the photomultiplier. The preamplifier works by using 

the photomultiplier current pulse to charge a small capacitor; the voltage across the capacitor is 

proportional to the charge stored in it. The NaI scintillator + photomultiplier output charges the 

capacitor in a microsecond or less. The resulting tiny capacitor voltage is greatly amplified by 

the preamplifier. That output is then further amplified and shaped by the filter/amplifier into a 

narrow voltage pulse (width of a couple of microseconds, height up to a few volts) corresponding 

to a detector event.  

Note that if more than photomultiplier pulse is generated by multiple detection events 

during this pulse integration and shaping time, the total charge output by the 

photomultiplier will be interpreted by the electronics to be a single, large pulse.  

The filter/amplifier’s gain is set by the experimenter as the product of two factors: its coarse 

gain, settable to one of several selectable values, and its fine gain, continuously adjustable 

through a range of about a factor of 2 or 3. The gain adjustment for this experiment is controlled 

using the MCA software. 
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Several experiments are set up so that the output of the filter/amplifier is monitored by an 

oscilloscope so you can see the actual voltage pulses being processed by the MCA. This is an 

important troubleshooting tool which can greatly aid you in determining whether the 

system is working properly and will help you set the proper photomultiplier voltage and 

amplifier gain. The scope should be set to around 1 volt/division and 1 sec/division. 

ADC:  The analog-to-digital converter (ADC) samples, measures, and digitizes the peak voltage 

of a pulse arriving from the filter/amplifier whenever it receives a gate signal from the 

discriminator (described below). The ADC output is a channel (or bin) number corresponding to 

the digitized voltage of the pulse. The channel number can range from 0 (for a tiny pulse) to 

1024 or higher (for a large pulse). The conversion gain is set using the MCA software and 

determines the total number of channels output by the ADC (1024 is a typical setting). By using 

more channels, you get higher resolution but fewer events/channel for a fixed total number of 

events.  

Discriminators and Gate Logic:  Lots of low-level noise is present in the output of the 

photomultiplier and preamplifier, and we don’t want the ADC to waste time digitizing it. A small 

preset threshold must be exceeded before the MCA interprets the input as a valid signal pulse. In 

addition, there are the user-controllable lower level discriminator (LLD) and upper level 

discriminator (ULD). These two adjustments set a window within the full-scale output voltage 

range of the amplifier. The discriminator and gate logic circuitry then generate an output gate 

signal whenever a pulse from the amplifier exceeds the preset threshold and has an amplitude 

which falls within the window set by the LLD and ULD. The output pulse then signals the ADC 

to measure and catalog the amplifier output as described above. The delay circuit shown in 

Figure 6 makes sure the gate pulse gets to the ADC before the signal does. 

The ADC is a precise, highly linear device which can take a microsecond or more to perform a 

conversion. During this conversion time, the ADC cannot respond to another pulse, so there is a 

dead time associated with the conversion. The live time is that fraction of time the ADC spends 

waiting for a new pulse to arrive (i.e., not busy performing a conversion). You want the live time 

to be a large fraction of the total time you spend collecting data (the real time). This unwanted 

dead time fraction is why the LLD and ULD are important.  

If an uninteresting signal with a very high pulse rate is present in the detector output, the 

ADC could spend most of its time measuring this uninteresting signal and will quite likely 

miss pulses you are interested in. Properly setting the LLD and ULD will allow the ADC to 

ignore these unwanted pulses, because no gate signal is generated for them. 
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INTERPRETING THE MCA HISTOGRAM DISPLAY 

A typical MCA spectrum 

Together the MCA electronics and the computer (using the MCA software) generate a histogram 

of number of events recorded for each digitized pulse height (ADC channel number). Using the 

MCA software you may save a histogram data set, clear the display and then start a new 

measurement. During the measurement the scintillator output pulses are amplified and processed 

by the MCA, building a new histogram display as the measurement proceeds. You may stop the 

measurement at any time so that you can study the histogram and process it using several tools 

available in the MCA software. Figure 8 shows a typical histogram display (for a 137Cs source). 

Each channel along the x-axis corresponds to a pulse-height interval or bin (ADC channel 

number); the y-axis displays how many pulses were received within that bin. 

 

Figure 8: Typical MCA histogram display for 137Cs, using a sodium iodide scintillator. Several 

important features are annotated. These features are explored in the next few sections of the 

text. The x-axis is the ADC channel number (bin), and the y-axis is the number of events recorded 

within that ADC bin number. Calibration of the instrument using known-energy sources will allow 

the experimenter to convert ADC bin number to energy deposited in the scintillator. This 

spectrum was obtained with ORTEC® digiBASE and MAESTRO® products used in Experiment 30a. 

Detector electrons and transferred energy 

One must carefully consider the expected characteristic signatures of the three basic interaction 

processes (Compton scattering, photoelectric absorption, and pair production) in order to 

γ-ray full-energy peak 

(0.66 MeV) 

Compton edge 

(0.48 MeV) 

x-ray full-energy peak 

(32 KeV) 

Backscatter feature 

(0.18 MeV) 
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successfully interpret an MCA spectrum of a high-energy photon source. As already mentioned, 

a rapid sequence of events within the scintillator generates a visible-light flash which is 

converted to a current pulse and processed by the MCA electronics to produce a resulting 

increment in a particular histogram channel. In this section we discuss this sequence in more 

detail for each of the three basic interactions in the scintillator.  

First examine the Cesium-137 decay diagram shown on the first page of Appendix A: Nuclear 

beta decay diagrams. The decay process can result in the emission of high-energy photons with 

two different energies: either a 0.66 MeV gamma-ray or a 32 keV x-ray (resulting from a 

conversion electron event). The most important thing to remember about how the MCA system 

responds to an interaction of one of these photons with atoms in the detector is that: 

The MCA displays a spectrum of the kinetic energies of individual electrons ejected from 

atoms in the detector by γ-ray photons—not the energies of the photons themselves. 

This fact is particularly relevant to the displayed spectrum resulting from Compton scattering of 

photons in the scintillator, but first we consider photoelectric absorption by an atom. 

Photoelectric absorption and the full-energy peak 

In this process the incident high-energy photon is absorbed by an atom of the scintillator, 

transferring all of its energy to a single inner atomic electron (usually a 1s electron), leaving a 

vacant electron state in the atom. As this electron escapes from its parent atom, its initial kinetic 

energy is reduced by the state’s binding energy as it climbs out of the atom’s Coulomb potential 

well. At the same time, the remaining electrons in the parent atom quickly cascade down into 

lower energy states, generating UV and x-ray photons which are then absorbed by other atoms in 

the scintillator, generating additional high energy electrons and photons.  

These ejected electrons will each have a large initial kinetic energy, but this energy is quickly 

shared among many hundreds or thousands of weakly-bound valence electrons in the scintillator 

material through an avalanche of collisions, a process analogous to the collisions of balls on a 

billiards table or collisions among the molecules of a gas. Thus the incident photon’s energy is 

efficiently and completely converted through this process into the combined binding energies of 

many valence electron-ion pairs (a completely negligible amount of energy is also transferred 

due to recoils of the various atoms, which is then lost as heat). The subsequent recombination of 

these electron-ion pairs generates the visible-light photons collected by the photomultiplier, as 

described previously.  

Photoelectric absorption therefore results in the capture of all of the photon’s energy by the 

detector, and therefore each photoelectric absorption interaction deposits the energy of the 

incident photon. The resulting MCA spectrum has a clear peak at the channel corresponding to 

this energy. These full-energy peaks provide two prominent features in the 137Cs spectrum shown 

in Figure 8: one for the 0.66 MeV γ-ray photons and one for the 32 keV x-ray photons. 
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Compton scattering and the Compton edge 

In this process an incident γ-ray photon gives up some fraction of its initial energy 
0k  to some 

weakly-bound, valence electron in the scintillator (which comprise the vast majority of the 

electrons in any material). Depending on the angle of the collision (Figure 2), the outgoing 

photon carries away energy k (equation (30.1)). If the outgoing photon subsequently escapes 

from the scintillator, then that photon’s energy k will not be detected. The valence electron 

involved in the scattering process leaves the atom with kinetic energy 
0 ,eT k k= −  which is then 

transferred to a large number of electron-ion pairs as described above.  

The MCA energy spectrum produced by many independent Compton scattering events with 

various scattering angles is therefore continuous from 0eT =  (corresponding to θ = 0o in 

equation (30.1)) up to the incident photons’ Compton edge energy Tedge, corresponding to θ = 

180o and given by equation (30.2). This Compton contribution to the MCA spectrum is readily 

apparent in Figure 8 as the broad area with ~400 counts/channel in the left half of that spectrum. 

All were produced by Compton scatters of the 0.66 MeV γ-ray photons emitted by the 137Cs 

source. The actual shape of the Compton spectrum is strongly dependent on the composition and 

size of the scintillator and the energy resolution of the MCA system, as addressed below. These 

factors are explored in more detail in the procedure for Experiment 30b.  

The Compton edge energy Tedge generally happens to be located very close to the channel 

position corresponding to 2/3 of the height of the scintillator Compton spectrum at its high-

energy end (about channel 512 in Figure 8), as described in this document’s Appendix C: 

MCA spectrum energy resolution and illustrated in Figure 13 on page 30–C–6.  

Multiple interactions 

If the scintillator crystal is large and dense enough, then the outgoing photon from a Compton 

scattering event may experience another interaction within the scintillator before it can escape. 

Traveling at the speed of light, these multiple events happen in a fraction of a nanosecond, much 

shorter than the time resolution of the detector system (~sec for NaI). Each successive photon 

interaction deposits energy in the scintillator in the form of additional ionized atoms as already 

described, and because multiple interactions take place in such a short time, the total deposited 

energy is processed by the detector system and displayed in the MCA histogram as a single 

event.  

A rapid succession of Compton scattering events generated by a single incoming photon can 

transfer more energy to the scintillator than could a single Compton event. Thus, multiple 

Compton scatters can transfer a total energy greater than the Compton edge energy, .edgeT  The 

signature of such successive Compton events is evident in the increased counts recorded in the 

energy gap between the Compton edge energy at 0.48 MeV and the full-energy peak at 0.66 MeV 

in the MCA display in Figure 8.  
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The energy of the outgoing photon following a large-angle Compton scattering event is often 

much lower than that of the incident photon. Since the probability of a photoelectric absorption 

increases rapidly as the photon energy decreases (see equation (30.4) and this document’s 

Appendix B: Mass attenuation coefficient charts), the final interaction in a multiple event chain 

is usually photoelectric absorption of the final, low-energy photon.  In this case the total energy 

transferred to the scintillator by the entire sequence of events is equal to the original, incoming 

photon’s energy 
0 ,k  and the combined event sequence results in a detector output which 

contributes to the photon full-energy peak. In fact, a sequence of multiple interactions 

culminating in photoelectric absorption is the most probable route to full-energy detection of 

high-energy γ-rays, since the probability of photoelectric absorption by the scintillator is usually 

much smaller than that for Compton scattering. This document’s Appendix B: Mass attenuation 

coefficient charts provides the details. 

The larger the scintillator volume, the more likely it is that multiple interactions will occur. 

The higher the Z of the atoms in the scintillator, the more likely it is that photoelectric 

absorption will occur. 

Thus a large NaI scintillator (iodine Z = 53) can have a much more prominent full-energy 

peak than can a smaller scintillator, especially if it made of low-Z atoms such as silicon or an 

acrylic.  

Also note that because outgoing photon energies are smallest for Compton scatters near 180°, 

events that would have been near the Compton edge in the displayed MCA spectrum are more 

likely to be part of a sequence of multiple events culminating in photoelectric absorption (and 

contribute to the full energy peak) than are Compton events depositing smaller energies. This 

effect explains why the Compton area of the NaI spectrum shown in Figure 8 has a much less 

prominent “hump” near the Compton edge than does a spectrum produced by a plastic 

scintillator or does the calculated spectrum shown in Figure 13 on page 30–C–4. 

Backscatter feature 

The source’s γ-ray photons can Compton scatter off of anything, not just the material in the 

scintillator. If such a photon scatters by an angle near 180° somewhere outside, but nearby, the 

scintillator, the outgoing photon may then enter the scintillator. If so, it arrives with an energy 

near the difference between the full energy peak and Compton edge energies: k0 – Tedge.  

Photoelectric absorption of such photons within the scintillator may produce a continuum of 

small peaks in the MCA spectrum as shown in Figure 8 (shaped like a small reflection of the 

original γ-ray’s Compton spectrum near Tedge). 



 30 – 18 3/26/2024 

 

Pair production and escape peaks (Experiment 30b) 

In Figure 9 we revisit Figure 5, but we neglect the tiny energy transferred to the nucleus, and we 

add the eventual particle-antiparticle annihilation of the positron with some electron in the 

material. The total kinetic energy of this photon-generated electron-positron pair is 

0– – 2 ,eT T k m+ + =  the original photon’s energy minus the combined rest energies of the two 

freshly-created particles. Both the electron and the positron carom around through the scintillator 

until each stops, eventually depositing all of their combined kinetic energy in the form of 

electron-ion pairs.  

The positron, however, has a positive charge, and after a very short time it forms an “atom” with 

one of the many electrons in the material: this electron-positron bound state is called positronium 

(like a hydrogen atom but with a positron instead of a proton). In around 10–10sec the electron 

and the positron annihilate, creating two photons. Since the positronium atom was essentially at 

rest in the scintillator, the two photons are emitted with equal energies and in opposite directions 

in order to conserve linear momentum. There is also a finite but small possibility that the 

positron may be annihilated while in flight, or that the eventual positronium annihilation emits 

three photons; we ignore these possibilities because: (1) in a solid material they rarely occur, and 

(2) the annihilation photons they produce can have a wide range of energies.  

 

Figure 9: Pair production by an incoming photon and subsequent annihilation of the outgoing 

positron with some electron in the scintillator. The positron first loses its kinetic energy (T+) by 

ionizing many atoms in the material, as does the high-speed electron of the pair (energy T–). One 

or both of the photons produced by the eventual electron-positron annihilation may interact with 

the scintillator, capturing some of its energy, or they may both escape without further interaction. 

Note that each annihilation photon has energy k equal to the rest energy of an electron. 

There are then three cases of note to consider depending on what happens to the annihilation 

photons (all three cases contribute to the 232Th spectrum shown in Figure 10 on page 19): 

−
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Full-energy peak: If both electron-positron annihilation photons are absorbed by the scintillator 

through photoelectric absorption before they can escape, the total energy deposited by all 

processes is equal to the total energy of the incoming γ-ray, k0, thus contributing to the full- 

energy peak. 

One-escape peak: If only one of the electron-positron annihilation photons is photoelectrically 

absorbed by the scintillator (the other annihilation photon escapes), then the energy deposited in 

the detector is 
0– – ,e eT T m k m+ + + =  giving rise to another peak in the MCA spectrum em  

below the full-energy peak: thus the so-called one-escape peak. 

Two-escape peak: If both electron-positron annihilation photons escape from the scintillator, then 

the only energy deposited is 
0– – 2 ,eT T k m+ + =  giving rise to a peak in the MCA spectrum 2 em  

below the full-energy peak: the two-escape peak. 

 

Figure 10: A portion of an MCA spectrum of 232Th showing the 2.6MeV -ray full-energy peak (far 

right) and pair-production one-escape and two-escape peaks at energies 1me and 2me below it. 

The escape peaks sit atop the 2.6MeV -ray’s Compton scattering spectrum. Another relatively 

strong full-energy peak is also apparent in the spectrum near the two-escape peak. 

Of course, either annihilation photon could simply Compton scatter, depositing just a fraction of 

its energy in the scintillator. This event would contribute to the displayed counts between the 

three peaks just described. 

Coincidence (sum) peaks 

If the source is strong or if it is very close to the scintillator, then it is very likely that more than 

one γ-ray photon may enter the scintillator nearly simultaneously. The NaI scintillator has an 

output current pulse width of ~1 μsec, so if two different photons were to interact with the 

scintillator within this time interval, then the energies they deposit may be combined by the 

MCA system into a single, large detection. For example, if both photons are photoelectrically 

absorbed, then to the detector this could appear to be a single “full-energy” event at the sum of 

the two photons’ energies. These coincidence events can give rise to sum peaks in the MCA 

spectrum. In particular, a single nuclear decay may emit several γ-ray photons in very quick 

succession (refer to the 60Co and 133Ba decays in APPENDIX A: Nuclear beta decay diagrams 

for examples), and it may be quite likely that more than one of these photons may enter the 
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scintillator. Successful interpretation of the MCA spectrum from such a source will require you 

to consider the possibility of coincidence events and to look for sum peaks in the spectrum. In 

fact, the left-most strong peak in the 232Th spectrum shown in Figure 10 is actually a sum peak 

generated by two γ-ray photons with energies of approximately 0.7–0.8 MeV. 

COUNTING STATISTICS AND THE POISSON DISTRIBUTION 

Examine the sample MCA spectrum in Figure 8 on page 14 again. There are two important 

sources of uncertainty affecting the spectrum’s displayed data that depend on what are called 

counting statistics. One important effect is evident, for example, in the “fuzziness” or “noise” in 

the nearly flat region of the spectrum between channels 300 and 500. Another, less obvious but 

very important, effect of counting statistics determines the energy resolution of the MCA 

spectrum—in particular, the widths of the 32 keV and 0.66 MeV photon full-energy peaks. In this 

section we briefly explore the origins of these effects on our spectra’s accuracies. 

Decays of the various radioactive nuclei in a source are completely random and independent of 

one another, but over time intervals much shorter than the isotope’s half-life, there will be an 

expected average decay rate: ,/r n =  where n is the number of radioactive nuclei and τ is their 

mean lifetime 1/2( ln[2]/ =  for half-life τ1/2). Given the geometry of the experimental set-up, the 

composition of the scintillator, and the probabilities for the various interactions in it, there will 

be some average expected rate for detections in any one particular MCA spectrum energy 

channel. Those detections, however, will also be completely random and independent of one 

another, because the arrivals of different incoming photons are random events, and these photons 

will generally interact with well-separated, independent atoms of the scintillator. Statisticians 

call such a sequence of events a Poisson process6: events occur at times which are completely 

random and independent, but there is nevertheless a long-term, mean event arrival rate. 

Given a Poisson process with a mean event rate r, then the expected (average) number of events 

 in any finite time interval t would be  = rt. The randomness and independence of the events, 

however, suggest that the actual numbers of events observed during intervals of length t would 

vary randomly from trial to trial. These counting statistics are characterized by the Poisson dis-

tribution, described by the following probability equation: 

 ( ; )
!

N

P N e
N


 −=  (30.5) 

( ; )P N   is the probability of observing exactly N randomly-occurring events during a particular 

time interval when the expected (mean) event number during such an interval is . The variance 

of the Poisson distribution with expected value  is also equal to , so that 

 

6 The eponymous mathematician Siméon Denis Poisson published his probability theory and famous distribution in 

1837, although a similar result had been published in London by Abraham de Moivre over a century earlier. 
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Poisson distribution standard deviation:  =  (30.6) 

The Poisson distribution is discrete, because N must be a nonnegative integer. The mean number 

, however, may be any nonnegative real number, since it represents a long-term average of the 

numbers N of events observed during many, many trials. Figure 11 shows plots of the Poisson 

distribution for various expected numbers of counts. As should be rather apparent from the 

figure, if the expected number  is larger than 10 or so, we can accurately approximate the 

Poisson distribution by a normal (Gaussian) distribution with mean and variance both equal to .  

 

Figure 11: Plots of Poisson distribution P(N) vs. N for four different values of the expected number 

of counts μ. Also plotted for each μ is a Gaussian (Normal) distribution with variance = mean = μ.  

The Poisson distributions with 5,   however, are significantly different from Gaussians that 

have the same mean and variance. In particular, the Gaussians have significant nonzero 

probabilities of finding 0,N   which is, of course, unrealistic for an actual counting experiment. 

Suppose that given a particular arrangement of a source and the detection apparatus, we expect 

that the average rate of accumulation of counts in a particular MCA channel to be some number r 

(counts/sec).  After accumulating an MCA spectrum for t seconds, we would then expect that, on 

average, we should have  = rt counts in that channel. The counting statistics would predict, 

however, that from trial to trial our observed numbers of counts N would show a variation 

described by the Poisson distribution, and the standard deviation of our observed numbers N 

around  should be 1/2 If a group of MCA channels are expected to each collect counts at about 

the same average rate r, then a particular spectrum should show a random distribution of counts 

in these various channels, again with standard deviation 1/2 around the mean count . This fact 

explains the channel-to-channel “noise” displayed in the spectrum of Figure 8. If the observed 

fluctuations are indeed consistent with this estimate, then we say that the spectrum’s uncertainty 

is limited by counting statistics; if the fluctuations are clearly greater than this value, then some 

other source of noise makes a significant contribution to the accuracy of the data. 

The displayed widths of the full-energy peaks in the MCA spectrum of Figure 8 are also limited 

by counting statistics and the Poisson distribution, this time due to the poor efficiency of the 
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photomultiplier for detecting visible-light photons generated by the scintillator. This problem is 

investigated in detail in this text’s Appendix C: MCA spectrum energy resolution. Please read 

that section for an explanation of the energy resolution limits of a scintillator-photomultiplier 

detector. 
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EXPERIMENT 30A 

This experiment is designed to introduce you to -ray spectroscopy using a Sodium Iodide (NaI) 

scintillation detector and MCA system. Goals for this experiment: 

• Become familiar with the detector and the MCA electronics. 

• Understand the decay schemes in APPENDIX A: Nuclear beta decay diagrams of the various 

radioactive nuclei and the particles they emit. 

• Roughly understand the physics of the interactions of high-energy photons in matter in 

general and in the scintillator in particular. Identify the various features in a -ray spectrum. 

• Understand the statistical (Poisson) uncertainties associated with counting experiments. 

• Be able to calibrate the MCA spectrometer and use your calibration to determine the energy 

of a positron annihilation photon (and thus determine the rest energy of the electron). 

30a: Prelab problems 

1. A nucleon is confined to a small potential well (the nucleus) with a size r of 510 Å− . The 

uncertainty principle provides an estimate of the minimum momentum p (pr = ℏ) and kinetic 

energy (2mT = p2) of a nucleon (mc2 = 940 MeV) so confined. Provide an order of magnitude 

estimate of this energy (in MeV), which should give a rough scale for nuclear transitions and 

-ray energies (ℏc = 1970 eVÅ). 

2. Use equation (30.1) on page 6 to determine the value of k = kmin (at  = 180°) for k0 ≫ me. 

3. Derive equation (30.2) on page 6 from (30.1). The -ray from a 137Cs decay has k0 = 

0.66166 MeV. Using me = 0.511 MeV, calculate the corresponding Compton edge energy for 

this photon and therefore the minimum possible energy k for its outgoing Compton-scattered 

photon. Do your answers agree with energies of the backscatter and Compton edge features 

shown in Figure 8 on page 14? 

4. Refer to the Sodium iodide mass attenuation coefficient chart in Appendix B: Mass 

attenuation coefficient charts, page 30–B–3. What is the probability that a 0.66 MeV -ray 

emitted by 137Cs travels through 5 cm of sodium iodide (NaI) without interacting? 

Remember: ( ) .
x

P x e
−

=  Why is it unlikely that in NaI a 1 MeV photon will undergo 

photoelectric absorption as its first interaction? 

5. Qualitatively, how would one expect the 137Cs spectrum in Figure 8 to change if the NaI 

scintillator were made larger? smaller? More specifically, how does the size of the scintillator 

affect the spectrum’s “photo-fraction” (fraction of events that contribute to the full energy 

peak)? Sketch spectra for each case. The answer to this question lies in understanding the 

relative likelihood of what could happen to an outgoing Compton scattered photon before it 

can escape from the scintillator. 
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Procedure 

The scintillator–photomultiplier unit is very fragile! Handle with care! Dropping the device 

or knocking it over will surely break it, and it costs about $2000 to replace. 

 

The High Voltage should be set to no more than 1100 Volts unless you know what you are 

doing! Photomultiplier tubes can be damaged by excessive voltage. 

Initial setup 

Ensure that your NaI detector assembly is securely mounted to its support stand (the NaI 

scintillators are encased in a bare metal shield; the lab’s plastic scintillator detectors are either 

painted blue or wrapped in black tape). Verify that the photomultiplier base (which includes the 

high-voltage supply and MCA electronics) is connected to the computer with a USB cable.  

Start the Maestro software (there should be an icon in the task bar and on the Windows desktop). 

From the menu, select Acquire/MCB Properties to open the electronics properties dialog.  

Initial MCB Properties dialog settings: 

Amplifier tab:  Fine Gain 1.0; Shaping Time 0.75μs 

ADC tab:  Gate Enable; Lower Level Disc 5; Upper Level Disc 1023 

Stabilizer tab:  neither Enabled box checked 

High Voltage tab:  Target volts 900; press the On button  

Presets tab:  both entries blank (erased) 

Leave this dialog box open for now and position it near the right edge of the display window. 

Start with a 137Cs source. The radioactive source material is in the small black or red end of the 

rod. Handle the rod by the clear plastic handle. Set the source near the detector, using hole in the 

top of the lead “pig” to support it.  

Taking and interpreting a 137Cs gamma spectrum 

If the Maestro window already displays a spectrum (from a previous use), then on the Maestro 

window toolbar click on the Erase button (just to the right of the red Stop button). Select the 

toolbar’s Log button to select logarithmic vertical scaling and take a spectrum by clicking on the 

green Go button. Click the Stop button after several seconds and you see a spectrum histogram  

(if nothing seems to happen, then check the MCB Properties dialog to verify that the high voltage 

is ON). With your initial gain and high-voltage settings, the 137Cs 661.6 keV full energy peak 

should be visible somewhere in the spectrum display, although its exact location will depend on 

the scintillator’s photomultiplier efficiency.  
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• Compare your spectrum to Figure 8. Use Erase, Go, and Stop to take new spectra. Familiarize 

yourself with the toolbar controls, especially the vertical scale settings: Log and A (for linear 

vertical autoscale). 

• Now adjust the MCB Properties dialog’s High Voltage setting, at first in increments of about 

25 volts, and take new spectra. Note how the horizontal positions of the MCA spectrum 

features change as you change the high voltage or the Amplifier/Fine Gain settings.  

• Adjust the High Voltage and Fine Gain values until the 0.6616 MeV -ray full-energy peak is at 

approximately MCA channel 768 and the 32 keV x-ray peak is clearly visible, as in Figure 8 

(channel 1023 is at the far right edge of the display window). Take a good spectrum and save it 

to a file. Identify the various features in your spectrum: full energy peak, Compton distribution 

and edge, backscatter feature, x-ray peak, etc. Use Figure 8 as a guide. 

Saving spectrum files for use with CurveFit, etc. 

To use Maestro spectrum data with CurveFit, save the spectrum in ASCII SPE format, which 

should be the default when you open its File Save dialog. Load the saved spectrum file into 

CurveFit using the Load Gamma spectrum (.Spe, .tsv) file selection of the Data I/O menu 

item on the CurveFit palette. 

Saved files can be reloaded into a Maestro spectrum buffer (and then resaved in other file 

formats if necessary). Saved spectra can be compared with a current Maestro spectrum 

using Maestro’s File/Compare… menu selection. 

In the lab, saved files can be plotted using Maestro’s companion plotting application by 

double-clicking on the file icon. These plots can then be saved as PDF files using that 

application’s Print menu selection and then selecting the Microsoft Print to PDF “printer.”  

• Open your saved file in CurveFit to check that it can be loaded successfully. Use the CurveFit 

main menu palette to navigate to the proper command to assign Poisson uncertainties to the 

spectrum data points (see the Data Analysis section for details). Next select a subrange of the 

data set that is dominated by the 0.66 MeV full-energy peak. Attempt a Gaussian+Linear fit to 

the data and assess the results.  

If a strong noise signal is present in the very lowest channels, you can increase the MCB 

Properties/ADC/Lower Level Disc setting by a few channels to filter it out. How might you tell 

the difference between low-level noise and an x-ray peak with an energy of only a few 10’s of 

keV?  
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Rate-Related Gain Shift 

A common problem with a photomultiplier tube is that its gain may change as a function of 

count rate.  You can check to see if your setup suffers from rate-related gain shift using 137Cs. 

Place the source very close to the scintillator, take a spectrum, and estimate the channel 

number of the full-energy peak using the MCA cursor. Now move the source several inches 

back and again take a spectrum. Does the channel number of the full-energy peak shift? 

If so, the following procedure seems to insure a minimum change in the photomultiplier's 

gain: keep the source far enough away from the detector so you can see some evidence of 

the x-ray background spectrum in your data, which rises in intensity at lower energies.  

Acquiring the calibration spectra 

• Roughly adjust the High Voltage and Fine Gain settings to place the 137Cs -ray full energy 

peak in the lower half of the MCA spectrum.  

• Now replace the source with 60Co and acquire a spectrum. Readjust the settings so that both 
60Co full-energy peaks are fully visible near the right end of the display, leaving enough room 

at the high-energy end to see the 1.46 MeV 40K peak you’ll find when you later take a 

background spectrum (maybe channel 850 or so for the 60Co 1.33 MeV peak).  

• Save the spectrum! Estimate your energy calibration for the horizontal axis (keV/channel). 

Leave the High Voltage and Fine Gain settings alone for the rest of the experiment! 

(So you don’t change your calibration!) 

• Take and save spectra of the various available sources (including 137Cs, of course!). Ensure 

that the Lower Level Disc is set low enough to see the x-rays at energies of ~30 keV. This 

data will be used to perform an accurate energy calibration of the MCA channel axis. Save all 

spectra for your lab analysis! Your 22Na spectrum will be used to determine the electron’s 

mass (rest energy). 

• Take a spectrum with no source (a background spectrum). Let the spectrum build for several 

minutes. Are there any recognizable full-energy peaks in the spectrum? Are there any sources 

being stored nearby or being used by another experimenter nearby? Do you have any ideas as 

to why the continuum background is more intense at lower energy? What may be causing this 

background activity? 

• Check the long-term stability of the system gain by taking another 60Co spectrum and 

compare the positions of the full energy peaks with your initial spectrum. Drift in the peak 

positions indicate a drift in gain, which would result in a drift in your energy calibration, a 

source of systematic error. Handle this systematic uncertainty in the calibration appropriately 
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when you determine the uncertainty in your electron mass determination during your data 

analysis. 

Securing the apparatus 

Turn off the high voltage before you exit the Maestro application. Return all sources to their 

containers. 
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Data Analysis 

As was discussed in the section Counting statistics and the Poisson distribution, the detection of 

an event in any particular channel of your gamma spectra is a sample from a random process, 

and you would expect the number of counts in each channel to vary as you repeat the 

experiment. The count data in each channel is a sample from a Poisson distribution, which 

should accurately describe this variation in the counts. 

For the Poisson distribution the expected variance in the counts you measure is just equal to the 

expected number of counts , so from equation (30.6) N  =  for each channel, where  is the 

expected number of counts for that channel. CurveFit provides a function which will assign 

Poisson uncertainty estimates to your count data – look under Modify data points: Transform 

Gamma Spectrum in the CurveFit main menu palette. The selection Set to Poisson count data 

will assume that the expected number of counts is well-approximated by the observed count 

value ( y), and will assign an estimated uncertainty to each y value equal to y  (if the count 

value is 0 or 1, the program will arbitrarily assign an uncertainty of 1). 

• Examine a small, flat portion of a spectrum where the average count is more than about 

30/channel. Estimate the channel-to-channel scatter in count number. If you assign Poisson 

error bars to your count data as described above and then fit that segment of the spectrum to a 

constant, the reduced  2 of the fit should be close to 1. Is this the case? Similarly, fitting a full-

energy peak with a Gaussian + Linear function should also give a reduced  2 close to 1 (don’t 

include much of the wings of the peak when doing the fit—a linear background is only an 

approximation). 

• Plot each of your source spectra and try to identify all features you see (as in Figure 8 on page 

14). Are there any features you can’t identify but are clearly real? What can you identify in the 
133Ba spectrum? Don’t forget about the possibility of coincidence peaks in a spectrum: see 

the section Coincidence (sum) peaks. The effect on the spectrum is to exhibit additional “full-

energy” peaks at positions which correspond to the sums of pairs of photon energies. This 

effect creates several additional features in the 133Ba spectrum. 

• Use the channel positions of the various full-energy peaks to generate a calibration data set 

consisting of (channel number, energy) pairs and then make a plot of MCA channel number 

versus energy E. Do not include the 22Na positron annihilation peak near 0.5 MeV in your 

calibration data set (but do use the 22Na 1.27 MeV -ray full-energy peak). Try linear and 

quadratic fits to your data, but realize that the response of the detector system should be quite 

linear above 100 keV or so (away from the NaI K-edge, shown in the Sodium iodide mass 

attenuation coefficient chart). You should end up with a calibration function which converts 

channel number to energy (in keV or MeV). How reliable is your calibration function for 

energies of 100 keV or less? 

• Use your calibration to determine the energy of the 22Na positron annihilation peak (with 

uncertainty). What does this tell you about the rest energy of the electron? How does any long-
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term drift is peak position (remember the two 60Co spectra you acquired) affect the uncertainty 

in your result? 

• Use your calibration and draw a vertical line on your 137Cs spectrum at the channel where the 

Compton edge energy should occur. Does this position (should be approximately 1/3 down 

from the peak of the hump) correspond to the position shown in Figure 8 and in Figure 13 (on 

page 30–C–4)? Use your calibration to determine the energy of your 137Cs spectrum’s 

backscatter feature. Does this match your calculation from Prelab problem 3? 

 

  



 30 – 30 3/26/2024 

 

EXPERIMENT 30B 

This experiment continues your study of -ray spectroscopy using scintillation detectors. You 

will: 

• Look for x-ray fluorescence from a lead absorber excited by a -ray source. 

• Recognize a sum (coincidence) peak in a -ray spectrum. 

• Use a 232Th source to see evidence of electron-positron pair production in a NaI detector. Use 

that spectrum to again estimate the electron rest energy. 

• Use a plastic scintillator and note the differences in the detection properties between it and 

NaI. Fit your data using a theoretical model of a scintillator Compton spectrum.  

• Understand how Poisson statistics and the scintillator-photomultiplier energy/photoelectron 

pe( )E  affects the MCA energy resolution.  

30b: Prelab problems 

1. Which element in the NaI scintillator is mainly responsible for photoelectric absorption? 

Why? The plastic scintillator you will use is composed of carbon and hydrogen. Given the Z 

dependence of photo  in equation (30.4) on page 8 and the fact that your plastic scintillator is 

only about 1cm thick (vs. 5cm for the NaI scintillators), how would you expect the 137Cs 

spectrum shown in Figure 8 on page 14 to change if the detector were plastic instead of NaI? 

(Make a sketch). Review Appendix B: Mass attenuation coefficient charts. 

2. What features in the 232Th spectrum of Figure 10 on page 19 show that pair production is 

evident in the NaI scintillation detector used to acquire that spectrum? 

3. For your data analysis you will use the notebook: Compton_Spectra1.nb available at: 

http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Compton%20Spectra%20Calculators/  

Download the notebook and the sample gamma spectrum file cs137_Compton_Sample.tsv 

Open the notebook and execute its initialization cells. Explore its features and push the Fit 

Single button on its palette. Follow the instructions, load the 137Cs sample gamma spectrum 

file you copied, and attempt to fit its Compton spectrum. Present your fit results and a plot. 

4. Review the section Counting statistics and the Poisson distribution on page 20. Study 

Appendix C: MCA spectrum energy resolution. Assume that an NaI MCA spectrum of the 

full-energy peak of 137Cs (0.6616 MeV) is fit to a Gaussian: the Gaussian’s mean is ADC bin 

867.04 ± .06 and its sigma is 25.5 ± .07 bins. Consider equation (30.C.6) on page 30–C–2. If 

ADC channel number is proportional to energy, so that ( ) ( ) ( ) ,e ebin bin T T  =  then 

show that the scintillator’s Epe ≈ 570 eV.  

 

http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Compton%20Spectra%20Calculators/
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Procedure 

If you don’t remember how to set up the apparatus and use the MCA software, review the Initial 

setup section from Experiment 30a. 

Lead x-ray fluorescence 

Whenever high-energy photons are photoelectrically absorbed by a heavy atom, the absorbing 

atom is left with a hole in one of its inner atomic electron shells. Decay of a higher-level electron 

into the hole leads to x-ray emission. This x-ray emission will, of course, have a characteristic 

energy which can be used to identify the atom. A common occurrence when using lead for 

shielding is the generation of x-rays of approximately 70–90 keV (see this document’s  Appendix 

D: Lead x-rays). 

Set up the NaI scintillator with a 137Cs source so that you get a spectrum similar to that in Figure 

8 on page 14. Make sure your spectrum shows a well-defined peak for the 32keV x-ray from the 

source. Put a thin (less than 3 mm) lead absorber between the source and the scintillator and take 

another spectrum using a different spectrum buffer. 

Overlay the two spectra using the MCA software. You should see a marked decrease in the 

32keV x-ray peak, but should see another, slightly higher energy peak instead. This is the lead x-

ray fluorescence peak. Is this x-ray fluorescence peak generated by Compton scattering or 

photoelectric absorption in the lead? 

Coincidence (sum) events 

Reduce the MCA gain until the 137Cs full-energy peak is to the left of the center channel. With 

the source touching the scintillator, take a spectrum for a few minutes. Do you see events at 

energies higher than the full-energy peak? Is there another, weak peak at high energy in the 

spectrum? Compare channel numbers of this peak and the 137Cs full-energy peak. What is the 

origin of this peak? What about the other events between the two peaks? 

Replace the source with 60Co and adjust the HV and gain settings to put its higher (1.33 MeV) 

full-energy peak at about channel 450. With the source right against the scintillator, take another 

spectrum using the log vertical scale. Do you notice a weak peak at about 2.5 MeV? How is this 

peak produced? Continue to accumulate this spectrum until that peak is fairly well-defined. Save 

the spectrum for calibration purposes. 

How should the intensity of these coincidence peaks vary as the source is moved away from the 

detector? 
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Thorium decay and pair production 

Keep the HV and gain settings from the 60Co work. Get the 232Th source and place it and a thick 

(a few millimeters) lead absorber right against the NaI detector.  The purpose of the lead 

absorber is to reduce the number of low-energy γ-rays entering the detector, keeping the counting 

rate sufficiently low to minimize any rate-related gain shift. Identify the 2.61 MeV Thorium full-

energy peak and the one- and two-escape peaks characteristic of pair production in the 

scintillator. Save the spectrum for later analysis. 

The plastic scintillator 

Return to 137Cs and reset the HV and amplifier settings to those you used for the lead x-ray 

investigation. Take a quick spectrum to make sure the Compton edge is at approximately channel 

512 and adjust the settings if necessary. Take a good reference spectrum with your final settings. 

Save this buffer. Set the active buffer to a different buffer. 

Now turn off the HV and hook up the plastic detector instead of NaI. Turn the HV back on and 

make sure you see pulses on the oscilloscope. Adjust the HV and gain so that the pulses peak 

close to 2V on the scope. 

Using a different buffer from that which holds your NaI spectrum, take a spectrum using the 

plastic scintillator. If necessary, make fine adjustments to the gain so that the Compton edge is at 

the same channel as that of the NaI spectrum. Compare the two spectra. Which detector has a 

higher Epe? Do you see any evidence of a full energy peak in the plastic scintillator spectrum? 

Save the spectrum and then take a 60Co spectrum as well (adjust the gain so that the Compton 

edge is evident in the spectrum. 

The sophomore lab Mathematica application Compton_Spectra1.nb may be used to attempt to 

fit your plastic scintillator spectra, as long as they are of high-quality. 

Securing the apparatus 

Turn off the high voltage before you exit the MCA application. Return all sources to their 

containers. Reconnect the NaI scintillator to the MCA electronics. 
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Data Analysis 

Determine the energy of the lead x-ray fluorescence peak using the 32keV and 661.6keV 137Cs 

peaks for an approximate, two-point energy calibration. 

Use the 60Co spectrum and 232Th full-energy peak to calibrate your energy axis for your pair 

production spectrum. Use this calibration to determine the energy spacing between the 232Th full-

energy peak and the one- and two-escape peaks. Use these results to estimate the electron rest 

energy. Does the one-escape peak give as accurate a result as the two-escape peak? Why or why 

not? 

Compare the 137Cs Compton edges for the NaI and plastic scintillators. Use the mean and σ of a 

Gaussian+Linear fit to your NaI 137Cs 661.6 keV full-energy peak to estimate the mean number 

of photoelectrons generated by a 661.6 keV full-energy detection. Determine the NaI detector’s 

average energy per photoelectron (Epe) using equation (30.C.6). 

Use the Compton_Spectra1.nb application to generate a Compton spectrum similar to your 

plastic scintillator spectrum. What Epe do you need to use to give a good match to the shapes of 

the spectra near the Compton edge? Note that the actual scintillator spectrum rises substantially 

at low energies, which implies that there are other things happening in the detector at low energy 

besides Compton scattering. Compare your 60Co plastic scintillator spectrum to the model in 

Compton_Spectra1.nb. 

Attempt to fit your 137Cs plastic scintillator Compton spectrum using the application. Follow its 

instructions carefully. 
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APPENDIX A: NUCLEAR BETA DECAY DIAGRAMS 
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References for the decays: 

Laboratoire National Henri Becquerel: Nuclear Data Table 

(Gif-sur-Yvette Cedex, France) 

http://www.lnhb.fr/nuclear-data/nuclear-data-table/ 

 
The Lund/LBNL Nuclear Data Search 

http://nucleardata.nuclear.lu.se/toi/abouttoi.htm 
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APPENDIX B: MASS ATTENUATION COEFFICIENT CHARTS 

As a high-energy photon passes through an assemblage of atoms, it may interact with one of 

them through one of the mechanisms described in the text (even if it is only Compton scattered, 

the outgoing photon will generally have a very different energy and direction of motion, and is 

clearly different from the original photon). As the photon traverses an infinitesimal thickness dx  

of a region containing potential targets, it has some small probability of an interaction which is 

proportional to dx  and independent of how much material the photon has so far successfully 

penetrated. Therefore if the photon has probability ( )P x  of surviving for a finite distance x 

through the material, then the probability it will survive to x dx+  is given by the differential 

equation 

 ( ) ( ) (1 )P x dx P x dx+ = −    

where dx  is that small differential probability that the photon will suffer an interaction 

somewhere in the next thickness .dx  The solution to this equation, with initial condition 

(0) 1,P =  is: 

Probability to reach distance x: ( )
x

P x e
−

=   (30.B.1) 

where the absorption coefficient μ is determined by the characteristics of the material and the 

energy of the photon and has units of (length)−1. The expected fraction of a beam of photons to 

emerge after passing through a thickness x of a material is just given by the probability 

expression (30.B.1). The photon’s mean free path  is given by 1 =  and is the mean 

distance through the material traveled by a typical photon before suffering an interaction. To 

follow the rest of this brief discussion about , cross sections, and the mass attenuation 

coefficient please read through General Appendix B: Cross Sections.  

Since the Compton scattering, photoelectric absorption, and pair production interactions of a 

photon with an atom are independent and mutually exclusive, the total interaction cross section 

for the photon and atom is given by the sum of the individual Compton, photoelectric and pair 

production cross sections: 

 Comptontotal photo pair   = + +   

In terms of the total cross section total  for interaction with a single atom, the absorption 

coefficient  is given by (General Appendix B, equations B-13 through B-16): 

 total total
AN

n
A


  = =   

where n is the number density of the atoms, ρ is their mass density, A is the molar mass of the 

material, and NA is Avogadro's number.  

  

http://www.sophphx.caltech.edu/Physics_7/General_Appendix_B.pdf
http://www.sophphx.caltech.edu/Physics_7/General_Appendix_B.pdf
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The absorption efficiency of a material is normally presented as a mass attenuation coefficient 

( /), rather than its absorption coefficient . Thus the value of the mass attenuation coefficient 

must be multiplied by the material’s mass density to calculate  for use in equation (30.B.1). 

Mass Attenuation Coefficient =  /  and has units (length)2/mass. 

The graphs on the next several pages display the contributions to the mass attenuation coefficient 

as a function of photon energy for several important materials. These charts were constructed 

from data supplied by the 

XCOM: Photon Cross Sections Database  

available at the NIST website: http://www.nist.gov/pml/data/xcom/. 

Three remarks about the graphs: 

a) The difference between the Klein-Nishina cross section (Figure 3 on page 7) and the 

Compton data in the graphs: the Klein-Nishina cross section describes Compton scattering by 

a single free electron, whereas the Compton contribution in a mass attenuation graph is due 

to scattering by all of an atom’s electrons. The actual total atomic Compton cross section 

decreases at low photon energies because tightly bound electrons do not contribute as much 

to the Compton process (Why? Hint: what is the “effective” mass of an electron tightly 

bound to the much heavier nucleus? How should this mass affect the cross section?) 

b) The rapid decrease of the photoelectric coefficient with increasing photon energy is due to 

the resonant nature of photoelectric absorption and is readily apparent in the figures. Various 

K-edges are also evident, corresponding to the binding energy of the K shell (1s) electrons.  

c) The mass attenuation coefficients  / in the figures are for single interactions in the 

material, which is the case only when the size of the material is small. For example, if the 

material is large (with dimensions comparable to or greater than the mean free path λ), then 

the probability of another event involving the outgoing photon from an initial Compton 

scattering event may be quite significant, and the total energy absorbed by the material is 

increased over what would be expected from just a single event. The consequences of this 

effect were considered in the text’s discussion of the expected scintillation spectra. The 

details of observed spectra can only be understood when multiple events are considered. 

Remember that the mass attenuation figures from the following graphs must be multiplied 

by the density of the material to determine the absorption coefficient μ and the mean free 

path λ = 1/μ. 

 

http://www.nist.gov/pml/data/xcom/
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ρ = 3.67 gm/cm3 
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ρ = 1.18 gm/cm3 
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ρ = 11.35 gm/cm3 

Z = 82;  A = 207.19 
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ρ = 8.96 gm/cm3 

Z = 29;  A = 63.54 
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ρ = 2.70 gm/cm3 

Z = 13;  A = 26.98 
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APPENDIX C: MCA SPECTRUM ENERGY RESOLUTION 

Due to statistical fluctuations the one-to-one relation between energy deposited in the scintillator 

and the final displayed MCA channel number for an event is only true on average. Notice the 

width of the 0.66 MeV full-energy peak displayed in the MCA spectrum shown in Figure 8 on 

page 14. This width is due to the statistical nature of the conversion of energy in the scintillator 

to the number of electrons at the photomultiplier output, and the resultant variation in that output 

given a fixed energy deposited by an incident photon. The most important source of this 

variation is the finite probability that a photon striking the photomultiplier’s photocathode will 

actually release an electron: only a small fraction of the available optical photons actually 

generate photoelectrons. A scintillator-photomultiplier system can be characterized by the 

average energy deposited in the scintillator necessary to produce one photoelectron: Epe.  

 pe mean energy photoelectron (eV)E   

For the NaI scintillators used in the lab Epe ranges from 600 to 1200 eV; for a plastic scintillator 

the conversion is generally much less efficient. The expected (mean) number of photoelectrons  

corresponding to an energy Te deposited in the scintillator is thus given by: 

 
pe

eT

E
 =  (30.C.1) 

Let’s calculate a typical . For 1 MeVeT = and pe 700 eV,E =  
1MeV

1400
700eV

 = 
 

The  calculated above is an average; the actual number of photoelectrons generated by any 

particular event will vary about this value. The Poisson distribution of equation (30.5) also 

provides the statistics which describe this fluctuation in the number, because the system counts 

random, independent events: each individual optical photon may or may not generate a 

photoelectron, and the optical photons associated with a particular event are actually 

independent, since they were each generated by different, independent electron-ion 

recombinations in the scintillator. As the section Counting statistics and the Poisson distribution 

describes, the expected variation in the number of photoelectrons around the average  is then 

given by: 

Poisson distribution standard deviation: 
1

; N
N


 

 
=  =  (30.C.2) 

Refer back to Figure 11 on page 21 and note that the width of a peak grows as its mean  

increases, but more slowly. Also shown in that figure is how well a Gaussian distribution with 

the same mean and variance matches the shape of the Poisson distribution. The Gaussian 

probability density function for mean = variance =   is given by (30.C.3). 



 30 – C – 2 3/26/2024 

 

 
21 ( )

( ; , ) exp
22

N
p N


 



 −
=  

 
 (30.C.4) 

This approximation of the Poisson distribution P(N;) = p(N;,) by a Gaussian is quite good 

for 10   or so. Armed with the Poisson distribution and its Gaussian approximation, we are 

now in a position to understand the actual shapes and widths of the MCA energy spectrum 

features shown in Figure 8 on page 14. 

We can transform the Poisson probability distribution P(N;) for the number of photoelectrons 

generated by a detection (equation (30.5)) into an expression relating the MCA displayed vs. 

actual deposited energies: we do this using the energy/photoelectron Epe and equation (30.C.1). 

This will yield the probability distribution P(T;Te), giving the probability of displaying an event 

at energy peT N E=   when the actual energy deposited in the scintillator was Te (so that 

pe ).eT E =   

For our analysis we want to let the energies T and Te vary continuously, whereas P(N;) and thus 

P(T;Te) is discrete (only nonnegative integer values allowed for the photoelectron count N). 

Consequently we replace the actual Poisson distribution with our Gaussian (30.C.4). 

The Gaussian distribution in (30.C.4) with mean and variance both equal to  gives a probability 

density p(N;,): p(N;,)dn gives the differential probability that the continuous variable n lies 

close to N. We now express this Gaussian approximation to the photoelectron distribution not in 

terms of the number of photoelectrons but in terms of the displayed energy T vs. the deposited 

energy Te, 

 
( )

2

2

1
( ; ) exp

2 ( )( ) 2

e
e

ee

T T
R T T

TT  

 −
= − 

  

 (30.C.5)  

where Te is now the mean of the Gaussian distribution and ( )eT  is its yet-to-be-determined 

standard deviation (in terms of energy). Such a probability density R(T;Te) is often called a 

response function or point spread function of a measurement system and in our case determines 

the MCA’s energy resolution. The standard deviation of the distribution around Te, i.e.  (Te), 

may be determined from (30.C.4) using the scintillator system’s Epe: peeT E =  

 
pe( ) 1Ne

e e

ET

T T

 

 
= = =   

MCA Peak width vs. Epe: 
2

pe pe( ) ; ( )e e e eT T E E T T =  =  (30.C.6) 

This expression relates the mean and standard deviation of a Gaussian fit to, for example, a full-

energy peak at energy Te to the system’s Epe. More generally, if an energy Te is deposited in the 
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scintillator, the differential probability for the MCA system to display an energy between T and  

T + dT is given by R(T;Te)dT using the response function in (30.C.5) with ( )eT  given by 

(30.C.6). As already mentioned, R(T;Te) therefore gives the displayed spectrum of a 

“monochromatic” source depositing exactly energy Te. 

If an interaction event could result in some value from a continuous distribution of energy being 

deposited in the scintillator with probability density D(Te) (as is the case for Compton scattering 

of photons in a scintillator), then the displayed energy spectrum of a large number of such events 

is given by a generalized sort of convolution of R(T;Te) and D(Te), equation (30.C.7). This 

convolution process is illustrated in Figure 12. 

 
0

( ) ( ; ) ( )e e eS T R D R T T D T dT



=     (30.C.7) 

 

Figure 12: Displayed Compton scattering spectrum in a scintillator system with finite energy 

resolution. This figure graphically illustrates the “convolution” of the system’s response function 

R(T;Te) with the actual interaction energy spectrum D(Te) using equation (30.C.7). 

This convolution process in the case of a displayed Compton spectrum is described in more 

detail in General Appendix D: Calculating Scintillator Compton Spectra. You can explore the 

subject in more detail using the sophomore lab Mathematica notebook Compton_Spectra1.nb 

downloadable at:  

http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Compton%20Spectra%20Calculators/  

An example of the application’s output is shown in Figure 13 (next page). 

Note that the Compton edge energy corresponds to that point where the displayed spectrum is at 

approximately 2/3 of its maximum (the actual ratio is shown in the text above the plot in Figure 

13); this is an excellent rule of thumb method to estimate the MCA channel number 

corresponding to a known Compton edge energy when calibrating an MCA system. 

http://www.sophphx.caltech.edu/Physics_7/General_Appendix_D.pdf
http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Compton%20Spectra%20Calculators/
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Figure 13: The Compton spectrum for a 0.662 MeV γ-ray generated using the sophomore lab 

“Compton_Spectra1.nb” application for Mathematica. The shaded curve is the displayed 

spectrum smoothed by the system’s finite energy resolution, in this case with Epe = 2keV, typical of 

a plastic scintillator as used in Experiment 30b. Also shown is the theoretical Compton spectrum 

without smoothing (the Compton edge energy Tedge is the abrupt cutoff at 0.478 MeV), along with 

vertical lines at the incoming photon energy k0 and at the backscatter energy, which is the 

outgoing photon energy following a 180° scatter. 
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APPENDIX D: LEAD X-RAYS 

 

 

 

 

Level and transition diagram is on next page. 
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