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THE MOSSBAUER EFFECT: HYPERFINE SPLITTING 

INTRODUCTION AND THEORY 

Experiment 28 introduced you to the method of using the Mössbauer Effect to enable gamma ray 
emission and subsequent absorption by nuclei embedded in solid crystals. You obtained an 
absorption line spectrum of the 14.4keV gamma ray emitted by iron-57 (the daughter nucleus 
following a cobalt-57 beta decay) and subsequently absorbed by another 57Fe nucleus situated 
between the emitter and your gamma ray detector. By Doppler-shifting the gamma ray energy 
using relative motion of the emitter and absorber, you were able to map out the absorption line 
spectrum as a function of their relative velocity. The spectrum in that experiment consisted of a 
single absorption line centered at a source-absorber relative velocity of around –0.2mm/sec 
(emitter and absorber moving away from each other). This so-called isomeric shift was caused by 
the differing chemical compositions of the emitter and absorber crystal matrices, and will be 
reviewed below. 

In this experiment you further investigate this 14.4keV transition in the 57Fe nucleus. You will 
discover that both the excited and ground states of this nucleus are degenerate (because of the 
states’ angular momenta), and that this energy degeneracy may be broken (split) by the ambient 
electromagnetic field experienced by the nucleus. You will observe as many as six absorption 
lines in the 14.4keV transition in 57Fe, as will be described below. 

57Co decay and 57Fe nuclear states 

The 57Co beta decay scheme is shown in Figure 1. The gamma ray generated during a transition 
to the ground state from the 14.413keV excited state of the daughter 57Fe nucleus is the source 
photon used to look for absorptions by a 
target 57Fe nucleus. Also shown in the 
figure are the angular momentum 
quantum numbers of these two nuclear 
states: in the 14.4keV excited state 
(denoted by an asterisk, ‘*’), the total 
nuclear angular momentum is * 3 2,I =  
whereas in the 57Fe ground state 1 2.I =   

Isomeric shift 

The Mössbauer source contains 57Co 
atoms embedded in a foil of either 
rhodium or palladium metal (depending 
on the manufacturer of the 57Co 
radioactive source). In Experiment 28 the 

 
Figure 1: 57Co decay scheme showing the relevant 
57Fe levels and emissions. 
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absorbing 57Fe nuclei made up a small fraction of the iron atoms in a thin foil of nonmagnetic 
stainless steel (57Fe makes up about 2.12% of natural iron). The chemical bonds of a 57Co or a 
57Fe atom to its neighbors in a solid introduce distortions in its various atomic electron wave-
functions. These distortions cause the electromagnetic field surrounding the nucleus to be 
slightly altered, which in turn very slightly shifts the differences between the energy levels of the 
nucleon states. These shifts differ for 57Fe nuclei embedded in different materials, so a slight 
Doppler shift is required to adjust the emitted gamma energy to that required by the absorber. As 
discussed in Experiment 28, the small energy shift ΔE between source and absorber excitation 
energies requires a small relative velocity isov  to provide a compensating Doppler shift in the 
emitted gamma ray energy. The required velocity is accurately given by the nonrelativistic 
formula: 

 
0

v E
c E

∆
=   (1) 

In equation (1) 0E =  14.4keV, and a negative 0 0(absorber) (source)E E E∆ = −  requires that the 
source and absorber move away from each other (red shift, 0).v <  Typically, 8~ 10 eV,E −∆  so 
the shift in energy is in the 11th or 12th decimal place! By definition, 57Fe isomeric energy shifts 
are defined relative to the actual energy of the 14.4keV nuclear transition of 57Fe when 
embedded in a crystal of pure, natural iron at room temperature (called α-iron, with a body-
centered cubic crystal structure). Using numbers for c and 0E  in (1), the radial velocity v 
corresponding to ΔE is:  

Energy–velocity relation: 8
mm sec0.208003
10 eV

v
E −

=
∆

  (2) 

Hyperfine splitting: theory 

As with an atom’s electron states, nuclear states can be expanded in an orthonormal basis of 
angular momentum eigenstates characterized by two quantum numbers: I (the total angular 
momentum quantum number) and zI  (the “magnetic” quantum number). Each such basis state 

, zI I  is also an energy eigenstate: ,, , .zz I I zI I E I I=H  Please note, however, that a state 
, zI I  may be degenerate, with multiple eigenvalues of the Hamiltonian (energy) operator H. In 

this case, we can (in principle) find another quantum number N to break this degeneracy, thus  

 , ,, , , ,zz N I I zN I I E N I I=H   (3) 

This situation is analogous, for example, to the case of atomic single-electron eigenstates, where 
N is called the principle quantum number. 

The nuclear states , zI I  are eigenstates of the total angular momentum (squared) operator: 
2, ( 1) , .z zI I I I I I= +2J   The total angular momentum quantum number I can take on only 

nonnegative integer or half-integer values (integers if the number of nucleons is even, half-
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integers if the number is odd, as for the case of 57Fe). The , zI I  are simultaneously eigenstates 
of a single angular momentum vector component (traditionally taken to be the ẑ  component), so 
that ˆ( ) , , , .z z z zI I I I I I I= =zz J J



   For an eigenstate of 2J  with quantum number I, the 
“magnetic” quantum number zI  can assume (2 1)I +  discrete values with ,zI I I− ≤ ≤  and with 
sequential values of zI  differing by 1.  

For the case of the 57Fe ground state, the two orthogonal angular momentum eigenstates are  
 1 1

2 2, , .zI I = ±   

The 14.4keV excited state has 4 angular momentum eigenstates: 
  3 3 3 1

2 2 2 2*, * ,  and *, * , .z zI I I I= ± = ±   

Nucleons are made up of quarks, each carrying an electric charge. Consequently, nonzero 
nuclear angular momentum generates an associated nuclear magnetic dipole moment (neutrons 
as well as protons contribute). The potential energy of this dipole moment in an applied external 
magnetic field B



 will shift the energy of a nuclear state (classically by ) :BE m B∆ = − ⋅


   

Hyperfine energy shift: B z n zE m B g I Bn∆ = − = −   (4) 

The energy shift (for relatively small field strengths) is proportional to the product of the 
magnetic flux density B and the angular momentum component along the direction of ,B



 which 
is .zI  The constant nn  is called the nuclear magneton, and is given by: 

Nuclear magneton: 83.152 451 10 eV Tes a2 ln
p

e
mn −×= =
   (5) 

In equation (5), e is the proton charge and pm  is the proton mass. The other constant in equation 
(4), g, is called the nuclear state’s g-factor, and typically has a value within an order of 
magnitude or two of unity (if nonzero). It may be positive or negative, and it differs for states of 
different energies (N) and total angular momentum (I), but is not otherwise a function of the 
quantum number .zI  The ground state of 57Fe has 0.18088,g = +  and, as you will discover for 
yourself, the ratio of the ground state g-factor to that of the 14.4keV excited state is 

* 1.752g g = −  (note the change in sign, thus * 0).g <   

In the presence of an external magnetic field B the energy of a nuclear state with total angular 
momentum quantum number I will therefore split into (2 1)I +  energy levels with uniform 
energy spacing ng Bn  between successive levels (since successive levels will have 1).zI∆ =  
This hyperfine splitting of a nuclear energy level is analogous to Zeeman splitting of atomic 
energy levels in the presence of an external magnetic field (Experiment 27) and to the fine 
structure of atomic energy levels due to electron spin-orbit coupling. Because the nuclear 
magneton nn  is approximately 2000 times smaller than the Bohr magneton 2 ,B ee m =   
hyperfine splitting of nuclear energy levels can be expected to be much more difficult to observe 
than the fine structure of atomic electron levels. 
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The 14.4keV gamma ray is absorbed by a 57Fe nucleus via a magnetic dipole transition causing, 
for example, the spin-flip of a single nucleon (which has spin ½), changing 1 2 * 3 2,I I= → =  
along with  1zI∆ = ±   or 0.zI∆ =  These possible changes in I and zI  are called selection rules 
for a magnetic dipole transition, because such a transition cannot result in other changes to these 
quantum numbers. As a consequence of these selection rules, there are six possible transitions 
between the two ground zI  states and the four excited *zI  states, as shown in Figure 2. This 
means that the presence of a magnetic field at the nucleus can split the 14.4keV transition into 
six absorption lines of differing energies. 

Note from Figure 2 that the differences in energies (or, equivalently, Doppler velocities using 
equation (2)) between lines 4 and 2 and between lines 5 and 3 give the hyperfine splitting of the 
57Fe ground state, whereas the energy differences 2–1, 3–2, 5–4, and 6–5 give the splitting of the 
14.4keV excited state. 

Figure 2: Hyperfine splitting of the 57Fe 
14.4keV absorption line in the presence of 
a magnetic field. The change in energy 
between successive hyperfine levels is given 
by ∆ = nE gμ B ,  where the g-factor differs 
for the two energy levels: ≈ − 1.75g* g . 
Selection rules require that z∆ = ±1I  or 0 
for this magnetic dipole gamma-ray transi-
tion,  leading to the six allowed transitions 
shown at right and absorption line splitting 
into the corresponding six lines shown 
below. 
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Observing hyperfine splitting 

Hyperfine splitting of the 14.4keV 57Fe nuclear transition might possibly be observed by placing 
the absorber sample in the field of a strong electromagnet controlled by the experimenter. Using 
the measured state g-factors in equation (4) and with the Doppler shift formula (2), the expected 
velocity separation of lines 1 and 6 (Figure 2) would be only about 0.32 (mm/sec)/Tesla (see 
prelab problem 2). With a quantum-limited minimum line width of 0.2 mm/sec (see the notes for 
Experiment 28), a quite large applied field would be required to clearly separate all six hyperfine 
lines.  

Interestingly, however, an absorber of pure, natural, α-phase iron, even when not subjected to an 
experimentally-applied magnetic field, exhibits clearly observable hyperfine splitting, with lines 
1 and 6 separated by over 10 mm/sec (see Figure 12 on page 16), corresponding to an applied 
magnetic field of 33Tesla! Natural metallic iron is ferromagnetic: a crystal of iron contains 
many microscopic domains whose atoms align their magnetic dipole moments all in a single 
direction (the many domains of a crystal, however, have magnetic moments which are oriented 
in random directions, unless it is magnetized by an externally-applied field, see Figure 3). 

 Ferromagnetic Antiferromagnetic Domains 

 
Figure 3: Ferromagnetic and antiferromagnetic materials exhibit long-range correlations of their 
atoms’ individual magnetic moments (left and center images). These alignments are maintained only 
over finite, microscopic volumes, however. These volumes, called domains, generally have random 
orientations relative to each other (right image). 

Each atom in a domain (either ferromagnetic or antiferromagnetic, as illustrated in Figure 3) 
usually has a net magnetic moment equal to a Bohr magneton, generated by a single, unpaired 
electron’s spin. This implies that the ambient average magnetic field in a ferromagnetic domain 
is on the order of a Tesla, much too weak to explain the hyperfine splitting observed in such 
materials (see Prelab Problem 1). It seems that in these “magnetically active” materials, however, 
the atomic electrons’ wave-functions are so distorted by chemical bonding to neighboring atoms 
that a single s-state electron (whose wave-function is nonzero near the nucleus) is left unpaired, 
and its “naked” magnetic dipole field creates a very large magnetic flux density in the vicinity of 
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the nucleus. The fields of these s-state electrons cause the observed hyperfine splitting in 57Fe 
nuclei whose atoms are incorporated into ferromagnetic and antiferromagnetic materials. 

Quadrupole splitting 

Another effect, completely unrelated to hyperfine splitting, is splitting of the 14.4keV transition 
energy due to the shape of the electrostatic potential well around the nucleus’s equilibrium 
position in the atom. To warm up a bit before attacking the quantum mechanics, first consider the 
situation of a macroscopic, classical distribution of positive electric charge of finite spatial extent 
with total charge q and spatial charge density distribution ( ).r 

 If this distribution is subject to 
an independently-generated electric potential ( ),r 

 then the total electrostatic potential energy V 
of the charge distribution due to only this independent field would be  

 3( ) ( )V r r d r = ∫
ddd     (6) 

If the external potential varies slowly over the finite extent of the charge distribution, then we 
can Taylor expand ( )r 

 in Cartesian coordinates about the origin: 

 21
2 ,

( ) (0) i j i j
i j

r r x x x x   = + ⋅∇ + ∂ ∂ ∂ +∑
 

   

Choose the potential at the origin as our reference, so (0) 0. ≡  The Hessian matrix of second 
partial derivatives 2

i jx x∂ ∂ ∂  is clearly symmetric, so we choose Cartesian coordinate axes 
such that this matrix is diagonal. Substituting our Taylor expansion for ( )r 

 into the integral (6) 
for the potential energy V, we get 

 2 21
6 ( )ii i

i
V p q Q x = ⋅∇ + ∂ ∂ +∑



   (7) 

where 3( )p r r d r≡ ∫
dddd       and  2 2 31 ( ) (3 )ii iqQ r x r d r≡ −∫

dd   (8) 

   
Figure 4: Charge distribution in a potential well which is not spherically symmetric, illustrating the 
quadrupole term in the potential energy, equations (7) and (8). The shaded ellipse represents the 
charge, the dashed lines contours of an externally-applied electric potential, increasing away from 
the center (both assumed to be rotationally symmetric about the z-axis).  The charge distribution in 
the left-hand figure has a total potential energy higher than the one in the right-hand figure.  
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p  is the charge distribution’s dipole moment about the origin ( 0),r =  and the three iiQ   defined 
in (8) are the diagonal elements of the distribution’s traceless Cartesian quadrupole moment 
tensor (traceless since 0).xx yy zzQ Q Q+ + =  If the charge distribution is in its equilibrium 
position at the origin, then the first term for the potential energy in (7) vanishes, and we are left 
with only the quadrupole term, which depends on the shapes of both the charge distribution and 
the electrostatic potential well and on their relative orientation (see Figure 4). Note that the iiQ  
as defined above have dimensions of area. 

To extend this classical result into an analogous quantum-mechanical Hamiltonian for the 57Fe 
nucleus, consider first the electrostatic potential well within which the nucleus sits. The nucleus 
has an equilibrium position centered at the bottom of the electrostatic potential well ( )r 

 
established by the atom’s electrons. Near the nucleus this well can be written as the sum of two 
parts: a spherically-symmetric term 0 ( )r   modified by the addition of a distortion ( ) :E r   

0( ) ( ) ( ).Er r r  = +
    The spherical symmetry of 0 ( )r   ensures that it can make no quadrupole 

contribution to the nuclear energy in equation (7), so we need only consider the effect of ( )E r   
on the nuclear Hamiltonian. To simplify our problem, we assume that the potential ( )E r   which 
distorts ( )r 

 away from perfect spherical symmetry  is rotationally symmetric about the z-axis, 
so that its mixed partial second derivatives vanish and 2 2 2 2.E Ex y ∂ ∂ = ∂ ∂  Now, E  is 
caused by electrons relatively far from the nucleus such as atomic electrons with nonzero orbital 
angular momentum in unfilled subshells or by electrons involved in chemical bonding of the 
atom to its neighbors in a molecule or crystal. Because E  is produced by charges external to the 
nucleus, it must satisfy Laplace’s equation near the nucleus: 2 2 20 ( ).E E ix ∇ = = ∂ ∂Σ  
Therefore, 2 2 2 2 2 2(1 2) ,E E Ex y z  ∂ ∂ = ∂ ∂ = − ∂ ∂  and the single second partial derivative 

2 2
E z∂ ∂  completely specifies the shape of E  near the nucleus (up to terms of second order in 

the Taylor series (7)). 

The shape and orientation of the nucleus itself determine its quadrupole tensor components .ijQ  
First realize that quantum mechanically, we can’t describe the spatial orientation of the nucleus 
beyond that given by specifying its angular momentum state , zI I . As for the Cartesian 
component operators i jQ  of a quantum-mechanical quadrupole tensor operator ,Q  the unique 
direction of the z-axis in the state , zI I  demands that the quadrupole moment tensor operator 
Q  be diagonal with =xx yyQ Q  (you can picture this condition as arising by imagining that the 
nucleus is rapidly precessing about the z-axis). Since Q  is also traceless, it must be the case that 

(1 2) ,= = −xx yy zzQ Q Q  so the operator zzQ  uniquely determines the quadrupole tensor .Q   

Given our symmetry findings and caveats from the above paragraphs, we can now write a 
quantum mechanical version of the quadrupole energy term in equation (7): 

 
2 2 2 2

2 2 2 26 4
E E E E

Q
e e

x y z z
    ∂ ∂ ∂ ∂

= + + = 
∂ ∂ ∂ ∂  

xx yy zz zzH Q Q Q Q   (9) 



 29-8 5/16/2017 

The various nuclear states , zI I  must be eigenstates of ,zzQ  the quantum-mechanical 
equivalent of the integral for ,zzQ  since it involves only the z-coordinate and 2.r  zzQ  must 
therefore be expressible using only angular momentum operators 2J  and .zJ  In fact, the 
integral of 2 23z r−  in (8) must go over into a simple multiple of the quantum operator 

2 23( ) .−zJ J  we set the scale of this operator’s eigenvalues by first assuming that we can 
determine the eigenvalue Q of zzQ  for the state with maximum :zI  , , .zI I I Q I I= =zzQ  
With this eigenvalue in hand, zzQ  operating on the other , zI I  states becomes: 

 2 2
2 3( )

(2 1)
Q

I I
 = − −

zz zQ J J


  

with eigenvalues: 
23 ( 1), ,(2 1)

z
z z

I I II I Q I II I
 − +

=  −  
zzQ    (10) 

The strange-looking denominator 2(2 1)I I −   has been chosen so that ,I IzzQ  does indeed 
equal , ,Q I I  as required. Clearly, the eigenvalues (10) are undefined if 0I =  or I =  ½. It can 
be shown, however, that Q  must vanish for these two total angular momentum states. The 
convention adopted for nuclear quadrupole moments is to use the proton charge e q=  in 
equations (8) and (9). With dimensions of area, Q is then quoted in barns (1 barn ≡  28 210 m ).−  
For the 14.4keV excited state of 57Fe, 0.082 barnsQ = +  (determined by nuclear magnetic 
resonance measurements). 

Using equation (9) with the eigenvalues (10) of zzQ , the eigenvalues of QH  for the quadrupole 
energy shifts become:  

Quadrupole energy shift:  
2 2

2
3 ( 1)

(2 1)4
E z

Q
eQ I I IE I Iz

  ∂ − +
∆ =  −∂   

  (11) 

The 57Fe ground state has I =  ½, so its 0≡Q  and 0.QE∴∆ ≡  The 14.4keV excited state has 
* 3 2,I =  so it has two different QE∆  eigenvalues:  

 

2

2

2

2

3* 2 4

1* 2 4

E

E

z Q

z Q

eQI E
z

eQI E
z





∂
= ± : ∆ = +

∂

∂
= ± : ∆ = −

∂

  (12) 

The resulting quadrupole splitting of the 14.4keV state is diagrammed in Figure 5 on page 9. 

Quadrupole energy shifts can occur along with hyperfine shifts, in which case the two outer 
hyperfine lines are both shifted oppositely to the shifts of the remaining four lines. The direction 
of this relative shift of the outer two lines indicates the sign of 2 2

E z∂ ∂  (where the z-axis is 
defined by the direction of B



 causing the hyperfine splitting): a relative shift of lines 1 and 6 to 
higher energy would indicated that 2 2 0.E z∂ ∂ >  
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Figure 5: Quadrupole splitting of the 57Fe 
14.4keV nuclear absorption line in an 
electric field which is not spherically 
symmetric. Magnetic dipole selection rules 
again require that z∆ = ±1I  or 0 for this 
gamma-ray transition, and the numbers on 
the arrows correspond to those numbers 
shown for the six hyperfine transitions in 
Figure 2 on page 4. The direction of the 
splitting of the 14.4keV state shown here 
assumes that 2 2/E z∂ ∂  > 0. 

 
 

 

EXPERIMENTAL APPARATUS 
Motion control, source, absorber, detector 

Unlike the apparatus in Experiment 28, in this experiment the apparatus moves the 57Co source 
while the absorber remains stationary. As diagrammed in Figure 6, the source is attached to a 
solenoid controlled by an electronic feedback and control unit, which oscillates the source 
toward and away from the absorber and detector while monitoring its position. As we will use 
the system, the solenoid will give the source a constant acceleration for ½ of each cycle, 
changing the acceleration direction half way through each cycle. Because the acceleration of the 
source is constant for half of each cycle, the velocity of the source increases and decreases 
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Figure 6: General arrangement of the Mössbauer source, absorber, and detector hardware. The 
solenoid drives the motion of the source; its design is similar to that of the voice-coil in a loudspeaker. 
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linearly, as shown in Figure 7. Each velocity is therefore sampled twice during a single cycle: as 
the velocity increases (channels 0-511) and again as the velocity decreases (channels 512-1022). 
Unfortunately, this apparatus does not provide a calibrated velocity or position readout, so you 
will use a natural iron Mössbauer spectrum to calibrate the channel velocities. 

14.4KeV gamma detection electronics 

As was the case in Experiment 28, the detector is a gas-proportional counter with a preamp 
mounted close to it. The detector’s associated electronics units are diagrammed in Figure 8 on 
page 11. The detector’s high voltage is controlled by a power supply mounted in the equipment 
rack. The output of the preamp is further amplified and fed to a single channel analyzer (SCA), 
which will generate a digital output pulse whenever an amplifier output pulse has an amplitude 
that falls within its adjustable discriminator window. You will set the SCA window upper and 
lower levels to respond to detections of the 14.4 KeV gamma ray we use for Mössbauer 
spectroscopy. By using a digital oscilloscope connected to the amplifier output but triggered by 
the SCA output, you can see the amplified pulses that fall within the discriminator settings of the 
single channel analyzer. You will use the oscilloscope to adjust the SCA discriminator window 
to accept only the 14.4 KeV gammas. The other oscilloscope monitors the source position output 
provided by the Mössbauer spectrometer unit. 

 
Figure 7:  The relation between source acceleration, velocity, position, and spectrum channel 
number. Velocity is + for motion of the source toward the absorber; position is + when the source is 
closer to the absorber. 
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Spectrometer unit front-panel controls 

The heart of the apparatus is a commercial Mössbauer spectrometer, a Ranger Scientific 
MS900A. Figure 9 shows the front panel of the MS900A and how its controls should be 
configured. The SAMPLING TIME must be set to “20.1” (200 microseconds) or the computer data 
capture application will not work properly. The TIME button must be deselected (out) for the data 
capture software to properly calculate the spectrum acquisition time. 

 
Figure 8: Block diagram of the detector and acquisition electronics units. 

 
Figure 9: Front panel of the MS900A spectrometer control electronics and recommended settings. 
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The primary MS900 controls you will use as you perform the experiment are the STORE and 
CLEAR buttons: 

STORE: push to enable, push again to disable. When enabled (selected, depressed in), a 
spectrum histogram is collected and continually updated with each oscillation of the 
source position. When disabled (out), the spectrum histogram is held in memory 
unchanged. 

CLEAR: push momentarily (a second or two) to erase the histogram memory. When 
released, a new spectrum will be collected (if the STORE button is enabled). 

Other controls of note: 

Sweep type: The symmetric (triangle) sweep type button should be selected and 
illuminated. 

Max. Velocity: Set this control to determine the velocity range of the source oscillation. 
10 mm/sec (shown in Figure 9) is an appropriate range for the absorbers you will use. 

Absorbers 

Stainless Steel: a nonmagnetic alloy of iron, the same material as is used in Experiment 28. 
Because this absorber will produce a spectrum with only a single absorption line, it is useful to 
relatively quickly check the operation of the apparatus. 

Natural Iron: a foil of pure, metallic, α-iron. By definition, this absorber has an isomeric shift of 
0, and its bcc crystal structure exhibits no quadrupole splitting. Its ferromagnetic nature causes a 
large hyperfine splitting, and the line positions of this spectrum will be used to calibrate your 
channel velocities.  

Iron(II) Sulfate: ferrous sulfate (FeSO4·H2O + FeSO4·7H2O) exhibits quite strong quadrupole 
splitting. Used to treat iron deficiency, it is on the World Health Organization's List of Essential 
Medicines. Our sample is probably a mixture of mainly the two hydrated forms shown. 

Iron(III) Oxide: α-phase ferric oxide (Fe2O3), also known as hematite or even “rust,” is weakly 
ferromagnetic at room temperature, but transitions to antiferromagnetic at 260 Kelvin. It exhibits 
hyperfine splitting significantly larger than that of metallic iron, and has, in fact, the largest 
splitting of all the various iron oxides. It exhibits quadrupole shifts as well. It was once the most 
commonly used material for magnetic tape and disc storage media. 

Data capture software 

The spectrum information is completely controlled by the MS900A unit. It is interfaced to a 
computer using a standard lab data acquisition system through an appropriately configured DAQ 
interface box. The interface application, MS900 Data Capture, only serves to copy and display 
the current spectrum histogram data transmitted by the MS900 over its computer interface cable. 
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The data capture application can store the histogram data to a standard CurveFit data file. The 
program calculates and displays the accumulated histogram acquisition time (in seconds) and 
will save this time in the comment section of a data file. The application’s user interface is very 
simple (Figure 10). 

 
Figure 10: The MS900 Data Capture application user interface window, displaying a short histogram 
spectrum of a stainless steel absorber. The main user controls are the Save Data and Quit buttons. 
The Show Rate? switch converts the displayed histogram data to count rate. Saved file data are 
always saved in a format of standard CurveFit (x,y) pairs: x = channel, y = counts. 
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EXPERIMENTAL PROCEDURE 

Initial setup 

1. High voltage: 1800V, + polarity 

2. Amplifier: Coarse Gain: 200, Shaping Time 2μS, Polarity + 

3. Single Channel Analyzer (SCA): Upper Level: 5.00, Lower Level: 0.00 

4. MS-900: Sampling time: 20.1 (200 μs); Velocity Pedestal: 0.0; Max Velocity: 10.0 

5. Upper (Pulse) oscilloscope: Trigger CHAN 2 (the SCA output) 

Remove any absorbers or lead shielding between the source and the detector. Apply the high 
voltage to the detector. Use the pulse oscilloscope display and the X-ray filter to identify the 6 
keV and 14.4 keV pulses from the amplifier. Trigger the oscilloscope on the SCA output pulses 
and adjust the SCA levels until only 14.4 keV pulses trigger the SCA output (Figure 11).  

6. MC900A source velocity profile: symmetric (triangular) 

Start the MS900 Data Capture application. The program will initially display a window with a 
diagram of the MS900 front panel showing the proper control settings (as in Figure 9 on page 
11). Close this MS900 setup window by clicking the mouse cursor anywhere on it. With the 
proper source motion selected, the lower oscilloscope should display the oscillating position 
profile of the source. 

 
Figure 11: Typical oscilloscope displays of the amplifier pulse output. Left: SCA upper and lower 
level discriminators opened to show all pulses. The bands of pulse heights associated with 6keV and 
14.4keV photon detections are shown. Right: SCA upper and lower level discriminators set to include 
only the 14.4keV photon detections. 

6keV
pulses

14.4keV
pulses
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Spectrum acquisitions 

Stainless Steel: insert the stainless steel absorber first. Use the X-ray filter to help secure the 
absorber to the sample shelf. Turn on the MS900 STORE, and push and hold the MS900 CLEAR 
until the computer-displayed spectrum resets. After a few minutes the displayed spectrum should 
begin to show absorption lines near channels 256 and 768. When you can clearly identify the 
absorption lines (after about 10 minutes), save the spectrum using the data capture application. 
Don’t waste a lot of time collecting this spectrum once you can identify the absorption line. If the 
absorption lines don’t appear, then you probably don’t have the SCA window set properly or 
you’ve set up the MS-900 incorrectly. 

Natural Iron: once you have obtained a useable stainless steel spectrum replace the absorber with 
a natural iron sample and CLEAR the MS-900 spectrum. Collect this spectrum for at least 90 
minutes because you want a high-quality spectrum of the iron. The line positions of this 
spectrum will be used to calibrate your channel velocities.  

Iron(II) Sulfate: ferrous sulfate (FeSO4) exhibits only quadrupole splitting. Use most of the 
remaining lab time to collect a spectrum of the iron sulfate sample.  

Iron(III) Oxide: Set up the ferric oxide (Fe2O3) sample to collect a spectrum overnight. Ferric 
oxide exhibits hyperfine splitting along with quadrupole shifts. 
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DATA ANALYSIS 

The primary tools you will need for your data analysis are CurveFit, the Mosspec.nb notebook, 
found in the website directory: 
http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Mosspec Exp 29/   
and, most importantly, your brain. 

Each complete spectrum data set contains two 
independent images of the spectrum, because 
during each cycle of the source’s motion, the 
source experiences a given velocity twice. Figure 
12 shows an example of a complete natural iron 
data set showing the two spectrum images. The 
velocity goes from maximally negative at channel 
0 to maximally positive near channel 511, then 
back to maximally negative at channel 1022. The 
source passes through 0-velocity near channels 256 
and 768. It is farthest from the detector near 
channel 256 and closest near channel 768, as 
illustrated in Figure 7 on page 10. Consequently, 
the 6 natural iron hyperfine absorption lines are visible in both the upper and lower halves of the 
data set. The count data in each channel are subject to Poisson count statistics, naturally, so you 
will assign the appropriate uncertainties to the count data. CurveFit and the Mosspec.nb 
notebook have functions to assign these uncertainties for you. 

Channel velocity calibration 

You will use your natural iron spectrum to calibrate the channel velocities of both the upper and 
lower halves of a spectrum. Calibration consists of using the known natural 57Fe line velocities to 
determine the 0-velocity channel and the velocity increment per channel. Each spectrum half 
(channels 0–511 and 512–1022) must be calibrated separately. Mosspec.nb provides a palette 
interface which makes this process straightforward. The steps for a full calibration are: 

1. If using the website link above to find Mosspec.nb, you must first save a copy of the 
notebook to your computer. Launch the Mosspec.nb notebook using Mathematica®, and 
execute the notebook’s initialization cells. CurveFit should start and an additional Mosspec 
palette should appear on the left side of the display. 

2. Load your α-Fe data set (Load Mosspec File palette button). 

3. Assign Poisson uncertainties to the count data (Set to Poisson count data button). 

4. Select a data subset which includes only the Fe spectrum occupying the lower half of the 
velocity channels (Keep an X-range button). 

 
Figure 12: A MS900 spectrum of α-iron. 

http://www.sophphx.caltech.edu/Physics_7/Mathematica_Notebooks/Mosspec%20Exp%2029/


 29-17 5/16/2017 

5. Use the known α-Fe line velocities to calibrate this half of the channels (Calibrate button). 
Check the χ2 and the fit results plot to make sure the calibration correctly located the 6 iron 
lines and is accurate. If not, try rebinning the data (Rebin Data button) and attempt to 
calibrate again. The program will perform a linear fit of the observed line positions (in 
channel number) to the known α-Fe line velocities (in mm/sec). It will save this calibration 
formula for use with other spectra you load. 

6. Convert the channel numbers (x-axis) to velocities (Convert to Velocity button). The x-axis 
scale in the data plot should now be in mm/sec. If so, the velocity calibration of the lower 
channels is complete. 

7. Restore the full Fe line spectrum (result following step 3) by pushing the Undo palette button 
a couple of times. 

8. Now select the upper half of the channel spectrum (Keep an X-range button) and calibrate it 
(steps 5 and 6). 

Mosspec maintains these two independent channel calibrations, one for each half of the 
spectrum. Its VelocityParameters[ ] function gives you access to the calibration coefficients. Use 
the Mosspec palette Help button to see a notebook with a list of the available functions. Clicking 
on one of the functions listed will then give its description. 

Fitting the absorption lines of a Mössbauer spectrum 

Once you have calibrated using α-Fe, you can load another spectrum, assign Poisson 
uncertainties, then and window the data to look at either half of it (as in steps 2–4 of the velocity 
calibration). Clearly, each Mössbauer spectrum acquired using the MS900 contains two 
complete, independent data sets. You used your α-Fe spectrum to independently velocity-

     
Figure 13: A raw MS900 Mössbauer spectrum contains two independent data sets (in this case of 
Fe2O3). Using your α-iron spectrum to determine the velocities corresponding to the spectrum 
channels, you can convert each half of the raw spectrum into a spectrum of absorption lines vs. 
velocity, as shown in the center and right graphs. 



 29-18 5/16/2017 

calibrate each half of the spectrum channel set (0–511 and 512–1022). Given these two 
independent calibrations, another acquired Mössbauer spectrum yields two independent, 
calibrated absorption line vs. velocity spectra, as shown in Figure 13. Use the Convert to 
Velocity button to convert the selected half of a spectrum’s x-axis to velocity using your previous 
natural Fe velocity calibration.  

Once converted to velocities, you can fit the lines of the selected half of the spectrum using the 
appropriate Mosspec Fit Lines button. Make sure you carefully examine the results (including a 
plot of the fit results) to make sure the lines were identified correctly by the program. Rebinning 
the data or providing initial line position estimates to the FitLines[ ] function may be necessary if 
the lines are weak and noisy. If successful, the fitting function will return the resulting line 
velocities in mm/sec and with their uncertainties, along with other parameters.  You should 
include CurveFit plots of the fit results and the resulting fit parameters with your analysis. 

Analyzing the absorption line velocities 

You should separately analyze each of the two halves of the complete, raw Mössbauer spectrum. 
By comparing the two results, you may be able to say something about the magnitudes of various 
systematic errors which are not reflected in the results’ individual uncertainty estimations (for 
example, nonlinearity in the actual channel-to-velocity function not included in the velocity 
calibration result). 

The number and positions of the various absorption lines of a spectrum are determined by the 
various perturbations to the energy of the 14.4keV transition discussed previously: isomeric shift, 
hyperfine splitting, and quadrupole splitting. The measured radial velocity of a line determines 
its energy shift using equation (2) on page 2; the energy shifts BE∆  of each level due to 
hyperfine splitting are described by equation (4) on page 3; the quadrupole shifts QE∆  in the 
excited state levels by equations (11) and (12) on page 8. The isomeric shift isoE∆  is determined 
from an average of the positions of all lines. Since you are measuring velocities for line positions 
rather than energy shifts, use the relation: 

 2 5
, * 4

* * ( *)I I B Qz z iso z z z
gv v v I I v Ig

   ∆ = + − + −    
  (13) 

Expressions relating the hyperfine and quadrupole shift velocities to the relevant atomic and 
nuclear parameters are derived in Prelab Problems 2 and 3. 

If the spectrum contains only one line (stainless steel), then Bv  and Qv  are both too small to lead 
to observable line splitting. Of course, any spectrum should provide a measurement of the 
absorber’s isomeric shift isov . Is the stainless steel isomeric shift consistent with what you 
measured in Experiment 28?  What about the stainless steel line width?  
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If exactly two lines are visible, then Qv  is clearly nonzero (FeSO4). Given an excited state 
quadrupole moment of 0.082Q = + barns, use your measured line splitting (Fit 2 Lines button) to 
determine the magnitude of  2 2

Ee z∂ ∂  (in 2eV Å )  for FeSO4. 

A 6-line spectrum implies that Bv  and *( )g g  may be measured from the line velocities, and a 
nonzero Qv  may be measureable as well. Mosspec.nb provides a function to fit the line velocities 
of a 6-line spectrum to the theoretical model given in equation (13). Once you have fit the lines 
(Fit 6 Lines button) of your Fe2O3 spectrum (and your Fe spectrum), you then use the Model 6 
Lines palette button to perform the analysis. Carefully examine the results of the line fits, 
including the χ2 as well as the uncertainties in the model parameters. Note also the differences 
between the model’s predicted line velocities and the line velocities determined from the data. 
You should model both the lower and upper halves of the spectrum. Are the model fit results 
consistent with each other given the χ2 values and the uncertainties? What do you conclude is 
your measured value of *( )?g g  Calculate ambient B fields (with uncertainties, of course) from 
the measured Bv  values and 2 2

Ee z∂ ∂  from the measured Qv  values. 

What about the Fe and Fe2O3 line widths? How do they compare to the natural line width you 
calculated from the excited state’s half-life (Experiment 28 prelab problems)? Note that the 
FitLines[ ] function uses a single line width to fit all lines it finds. This may not be a very good 
idea for the multi-line spectra. You can always select a single absorption line (using the Keep an 
X-range button) and then fit it with a single line (Fit 1 Line button). Do this for an inner and an 
outer line of one of your 6-line spectra. How do the widths of the two lines compare? 

Merging the two halves of a spectrum into a single data set 

Here is a procedure to combine both halves of a spectrum into a single, merged data set: 

1. Select one half of the full spectrum and convert the x-axis to velocities. 

2. Save this spectrum using the CurveFit main palette Undo and Backup: Backup data button 
and menu selection. By doing this, you can later merge this data with that for the other half of 
the acquired spectrum. 

3. Select the other half of the spectrum and again convert its x-axis to velocities. 

4. Merge the first, backed-up spectrum using the CurveFit main palette Undo and Backup: 
Merge Backup with data button and menu selection. 

This procedure may be especially useful to improve the quality of your data for a spectrum taken 
for only a few minutes. 
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PRELAB PROBLEMS 

1. Ferromagnetic materials typically have a single unpaired electron per atom whose magnetic 
moment contributes to the ambient, average magnetic flux density B present in a typical 
magnetic domain. The magnitude of the magnetic dipole moment m  of a single electron is 
approximately equal to a Bohr magneton: 55.79 10 eV Tesla .B −= ×  The number density of 
iron atoms in its α-iron phase is given by Avogadro’s number divided by iron’s molar 
volume: Fe

23 30.85 10 cmn = ×  (note that this is typical of the atomic number density of 
many materials: 23 310 cm ).≈  The average magnetic flux density B produced within a 
typical domain of a magnetic material with an average magnetic dipole density M



 (all 
aligned in the same direction) is approximately given by 0 ,B M≈  where 0

74 10  −= ×  
3 2(meter Tesla Joule)  is the vacuum permeability. What is the approximate average 

magnetic flux density B within a domain of ferromagnetic iron (assuming 1 B  per atom)? 

Note: you can use Mathematica® expressions to provide these numbers (assuming version 9 
or later): 

B : UnitConvert[ Quantity["BohrMagneton"], ("Electronvolts"/"Teslas") ] 

0 : UnitConvert[ "MagneticConstant", ("Meters"^3 "Teslas"^2/"Joules") ] 

Fen : UnitConvert[ (UnitConvert[ Quantity[ 1,"AvogadroConstant"] ]) /  

  ElementData[26,"MolarVolume"], 

  "Centimeters"^(-3) ] 

2. For an absorber exhibiting hyperfine splitting only (no quadrupole and isomeric shifts), show 
that the relative velocity of the line representing the transition between the 57Fe ground state 

, zI I  and the 14.4keV excited state *, *zI I  can be written as: 

 , *
* *I I Bz z z z

gv v I Ig
 ∆ = −  

 (14) 

What is the expression for Bv  in terms of g, nn , B, and E0? Equation (2) on page 2 and (4) 
on page 3 may be helpful. Given 0.1809g = +  and 83.15 10 eV Tesla ,nn −×=  calculate the 
value of /Bv B  in (mm/sec)/Tesla. (answer: 0.1186) 

For a 1 Tesla field, what is the expected velocity separation (in mm/sec) between lines 1 and 
6 (see Figure 2 on page 4) if * 1 1.75g g = − ? (answer: 0.322 mm/sec) 

Again note: you can use Mathematica® expressions to provide the relevant numbers 
(assuming version 9 or later): 

nn : UnitConvert[ Quantity["NuclearMagnetons"], ("Electronvolts"/"Teslas") ] 

E0 : UnitConvert[ (IsotopeData["Fe57", "ExcitedStateEnergies"]//First), "Electronvolts" ] 

g : 2 IsotopeData["Fe57", "MagneticMoment"] / Quantity["NuclearMagnetons"] 

c : 1.0 UnitConvert[Quantity["SpeedOfLight"], "Millimeters"/"Seconds"] 
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3. For an absorber exhibiting quadrupole splitting only (no hyperfine splitting or isomeric 
shift), show that the shift in velocity of a line representing the transition between the 57Fe 
ground state , zI I  and the 14.4keV excited state *, *zI I  can be written as: 

 2 5
, * 4( *)I I Qz z zv v I ∆ = −    (15) 

Consider equations (11) and (12) on page 8. Give an expression for Qv  in terms of the atomic 
and nuclear properties used in those expressions. 

4. Find Mosspec.nb on the lab network drive and copy it to your computer. Open it using 
Mathematica® and ensure that the initialization cells are executed. Use the command: 

ModelPeaks[ FeLineV[ ] ] 

to determine the velocity parameters isov ,  Bv , and Qv  from a fit of equation (13) on page 18 
to a list of the standard α-iron line velocities (executing FeLineV[ ] alone returns a list of these 
velocities). 

a. What is the average line velocity uncertainty according to the fit results? 

b. From the fit’s value for Bv , what must be the ambient magnetic flux density B (in 
Tesla) at the location of an iron nucleus? 

c. How does the fit’s calculation of *( )g g  compare to the value given in the text to be 
–1.752? 
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