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THE TEMPERATURE DEPENDENCE OF RESISTANCE 

INTRODUCTION 

A steady (DC) electrical current is transmitted through a solid material by the bulk motions of 
mobile, charged particles (e.g. electrons) within it. The DC electrical conductivity of a solid 
material is an indicator of how abundant these mobile charges may be and how easily they can 
move within the material in response to an externally-applied electric field. The variation of this 
conductivity with temperature provides important clues to the nature of the fundamental 
dynamics and statistical behavior of a material’s molecules and the electrons they share (forming 
the bonds between them). 

In this experiment you will measure the temperature dependence of the DC electrical resistances 
of a few solids, including two archetypes of electrical behavior: metallic conductors and typical 
semiconductors. The DC resistances of the various samples will be accurately recorded over a 
temperature range of 233−383 Kelvin (−40°C to +110°C); by analyzing this data you will gain 
some insights into the surprisingly complicated behaviors of the charges within them. 

A MICROSCOPIC ORIGIN FOR DC ELECTRICAL CONDUCTIVITY 

It is a well-recognized fact that the application of a small, constant voltage ( )V  across a 
conducting material results in a proportional, steady current flow ( )I  in the circuit connected to 
it — this observation is, of course, embodied in what we call Ohm’s Law: V I R= , where the 
constant of proportionality, R, is called the element’s resistance.1 We wish to develop a simple 
model for the microscopic origin of electrical conductivity in a solid which can explain this 
observed relationship.  

 
Figure 1: A uniform, cylindrical, conducting wire carrying current I in response to an applied 
voltage V. The wire’s length is L and its cross-sectional area is A. The other quantities shown are 
defined in the text. 

Consider a conductor which has been formed into a long, homogeneous cylinder of length L and 
cross sectional area A (as in Figure 1). A battery applies the potential V, and current I flows 

                                                 
1 The Prussian (German) physicist Georg Ohm published the law named for him in 1827. It was based on 
experiments he conducted during his tenure as a high school teacher in Cologne. 
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through the cylinder. The electric field within the wire is ,E V L=  and the current density 
(current area)  inside the wire is J I A= .  

In terms of E and J Ohm’s law may be written: 

 1, LI R V J E
A R

σ σ  = → = =  
 

 

  (24.1) 

Thus Ohm’s law implies that the current density at a point in a conductor is proportional to the 
local electric field at that point; the constant of proportionality, σ, is called the conductivity. The 
reciprocal of the conductivity is known as a material’s resistivity: 1ρ σ −≡ . For a good conductor 
(such as copper) resistivity is on the order of a few micro-ohm centimeters at room temperature 
(a good insulator, in contrast, would have a resistivity of at least 1020 times larger!). 

To proceed with an elementary microscopic theory of a solid’s σ (or ρ), assume that a solid metal 
or other conductor contains a cadre of identical mobile charges, called  charge carriers (each of 
mass m and charge q), which may be accelerated by the application of an external electric field. 
These mobile charge carriers in a typical metal clearly come from the constituent atoms’ valence 
electrons (the most weakly bound electrons) — one or more of these electrons may be released 
by each atom as it forms chemical bonds with its neighbors. These electrons might then be able 
to roam relatively freely throughout the interior of the metal, leaving behind ions fixed in 
position by their bonds to their neighbors. The set of essentially immobile, relatively massive 
ions (whose charges balance those of the charge carriers) form a nearly rigid lattice — it is this 
ion lattice which makes the material a solid rather than a fluid. 

If the number density of the ions is N and they each contribute an average number Z of electrons 
to the pool of charge carriers (each with charge q e= − ) then the charge carrier number density n 
within the metal would be n Z N= . For example, copper provides one electron per atom, thus 

23 30.85 10 cmn N= = ×  at 300K (using the atomic weight of copper and the metal’s mass 
density); this pool of charge carriers is collectively referred to as the metal’s set of conduction 
electrons. 

The application of an electric field to a conductor will accelerate the individual charge carriers, 
but thermal motions and random collisions within it might be expected to continually spoil what 
would otherwise be a coherent acceleration of the center-of-mass of the body of charge carriers. 
Assume that the net result of this thermal jostling will limit the average drift velocity of the 
charges in response to the applied field to be ,Dv  a vector velocity parallel to and proportional to 
the local applied field E



 within the material.2 It is this average drift of the charges which gives 
rise to the observed current density J



 within the material.  

                                                 
2 Actually, we might expect that since a solid’s crystalline structure is not perfectly isotropic, Dv  generally need not 
be parallel to the applied field E



. In this case we would talk about a conductivity tensor relating J


 and E


 in 
equation (24.1). We won’t consider this added complication here. 
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Referring again to Figure 1, a net average drift velocity Dv  of the body of charge carriers implies 
that those within a distance Ddl v dt=  of the cross-sectional surface A will drift through it during 
time dt. If the charge carriers have number density n and charge q, then a total charge of 

DdQ qnAdl qnAv dt= =  will cross the surface during time dt, giving rise to the current 
DI dQ dt qnAv= = . Thus the current density J is given by 

  DJ nqv=


  (24.2) 

This average drift velocity could be quite small in a good conductor, even when it carries a large 
current. For example, a copper wire with a 1mm2 cross-sectional area carrying a 1 Ampere 
current would require an average drift velocity of its conduction electrons of less than 
0.08 mm/sec. In contrast, the random thermal velocities expected of the charge carriers should be 
much larger. If they were to behave as a classical gas of particles in thermal equilibrium with 
their surroundings and at temperature T, then their mean kinetic energy should be given by the 
equipartition theorem (see General Appendix B, Fundamental Concepts of Thermal Physics):  

 2 31
2 2 Bmv k T=   (24.3) 

( Bk  is Boltzmann’s constant; 300K 0.026eV,Bk × ≈  about 1 40  electron volt). For an electron, 
2 0.511MeVmc = (mega-electron volt), so at room temperature equation (24.3) would imply that 

the electrons’ equilibrium RMS thermal speed Tv  would be approximately 

 44 10 120km secT Tv c v−≈ × → ≈   

which is more than a billion times larger than the average electron drift velocity Dv  estimated 
earlier. Quite obviously, we would therefore expect that T Dv v  for a typical metallic 
conductor. The charge carrier collisions which maintain their thermal equilibrium with the ion 
lattice must therefore be frequent and violent compared to the relatively modest acceleration 
applied by the external electric field .E



 Any evidence of drift due to an applied electric field (of 
order Dv ) will be completely erased by a collision — the average velocity of a charge carrier 
immediately following a collision will be 0, although its average speed will be .Tv  

We assume that charge carrier collisions with the ion lattice are random, independent, nearly 
instantaneous events compared to the mean time between collisions, τ. The probability that any 
given charge carrier will experience another collision in the next small time interval dt is equal to 
dt t , independently of how long ago its last collision occurred. Thus the probability that the 
charge carrier will avoid a collision over the next time interval t is equal to te t− , and the mean 
time since its last collision is τ. Otherwise, between collisions a charge carrier’s motion evolves 
under the influence of externally-imposed fields. The mean time between collisions τ is also 
called the relaxation time because it determines the time scale over which the charge carriers’ 
temperature relaxes to its new equilibrium value after a change in the temperature of the ion 
lattice. 

http://www.sophphx.caltech.edu/Physics_6/Appendix_B_thermal_physics.pdf
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Following a collision with the ion lattice, a charge carrier will be accelerated by the externally-
imposed electric field: .qE m a=



  Since on average each charge carrier’s last collision occurred τ 
previously, at which time its average velocity was 0, the average drift velocity of the collection 
of charge carriers would be Dv at=

  . Thus the equation (24.2) becomes 

  
2qJ nq a n E

m
t t= =

 

  

 
2q n

m
σ t=  (24.4) 

Equation (24.4) is our first major theoretical result, known as the Drude relaxation time model of 
DC electrical conductivity.3 Given our earlier calculation of 23 30.85 10 cmn = ×  in copper and 
its measured room-temperature resistivity of 1 1.6ρ σ= ≈  micro-ohm centimeters, copper’s 
corresponding relaxation time would be 143 10 sec.−≈ ×  For comparison, this time equals the 
period of electromagnetic radiation with a wavelength of 1 micron: near-infrared light a bit 
beyond the red end of the visible spectrum (0.75 micron). It is the temperature dependence of 
(24.4) which we investigate in this experiment. 

THE MEAN FREE PATH 

Given an assumed mean time between collisions with the ion lattice of τ, we can similarly define 
the mean free path length λ traversed by a typical charge carrier between collisions to be Tvλ t=
(we can safely ignore the effect of drift velocity Dv  in this expression because ).T Dv v  How 
can λ be expressed in terms of the physical nature of the solid? 

The charge carriers are scattered by interactions with various sites in the ion lattice. Some of 
these scattering sites could be essentially permanent locations in the lattice such as defects or 
grain boundaries of its crystalline structure; others could be, for example, the locations of 
particularly strong, momentary, random thermal vibrations of the ions in the lattice. A “collision” 
with the lattice would occur if a charge carrier is scattered (changes its velocity vector) by a large 
angle or its speed is changed by a factor of order unity. We assume that these scattering sites are 
uniformly but randomly distributed throughout the material with an average number density of 

Sn  (S for “scattering sites”).  

Assume that a charge carrier whose original, undeflected path would have it miss the center of a 
particular scattering site by distance Sb b≤  will experience a collision with the site (the distance 
b is called the impact parameter), but if its path would miss the scattering site center by more 
than Sb  then its trajectory is minimally affected (if at all). Thus if a charge carrier’s original 
trajectory would pass through a circular cross sectional area of 2

S Sbσ π=  centered on a 

                                                 
3 The German physicist Paul Drude proposed his model for electrical conduction in 1900, three years after J.J. 
Thompson’s discovery of the electron. 
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scattering site and normal to the carrier’s path, then a collision with the site results. The area Sσ  
is called the total cross section for a collision event to occur (don’t confuse this Sσ  with the 
conductivity ).σ  With these two general characteristics of the charge carrier-ion lattice 
scattering process (  and )S Sn σ  we can determine the mean free path λ. 

Consider the hypothetical situation shown in Figure 2 at right, 
in which a “beam” of charge carriers (all with the same 
velocity in the ẑ  direction) passes through a thin disk of 
scattering sites oriented perpendicularly to the velocity vectors 
of the charge carriers; the emerging beam contains only those 
charge carriers which did not experience a collision with one of 
the sites in the disk. The number of scattering sites per unit area 
in the disk is Sn dz , and their combined cross sectional area 
obstructs a fractional area S Sn dzσ  of the incoming beam. Thus 
only the fraction 1 S Sn dzσ−  of the incoming particles makes it 
through the disk without a collision. This then must be the 
probability that a single incoming particle will avoid a collision 
while traveling through an infinitesimal thickness of material 
containing scattering sites. 

What this implies is that if ( )P z  is the probability that a charge carrier has already traversed a 
distance z through the material without a collision, then the probability that it makes it another dz 
farther is ( ) ( ) (1 ) ( )S SP z dz P z dP n dz P zσ+ = + = − , so ( )S SdP dz n P zσ= − . Integrating, 

( ) S Sn zP z e σ−= . The mean distance a typical charge carrier will travel without a collision (the 
mean free path) is then the integral: 

 0 0

0 0

( ) 1

( )

S S

S S S S

n z

n z

zP z dz ze dz

nP z dz e dz

σ

σ
λ λ

σ

∞ ∞ −

∞ ∞ −
= = = =∫ ∫
∫ ∫

  (24.5) 

The mean time between collisions τ in expression (24.4) for the conductivity may be replaced 
with .Tvλ  Thus the temperature dependence of the mean free path, ( ),Tλ  will clearly have a 
direct influence on the conductivity, ( ),Tσ  so we now consider λ’s temperature dependence.  

Some ion lattice scattering sites may be characterized as a set of lattice distortions which are 
relatively fixed in size ( )Sσ  and number ( )Sn , although some may be able to move about within 
the material. Examples of these sorts of charge carrier obstacles are crystal grain boundaries and 
certain types of crystal lattice defects. The efficacy of this class of scattering site is generally 
nearly independent of temperature, and its members may constitute the dominant scattering 
mechanism in relatively high-resistivity conductors such as alloys. 

The dominant scattering mechanism in high-conductivity metals and carefully-prepared crystals, 
on the other hand, is due to thermal motions of the ions in the lattice, and these motions are 
clearly going to depend on the temperature (the thermal origin of these motions are, naturally, 

 
Figure 2: A “beam” of charge 
carriers passes through a thin disk 
of fixed scattering sites. The 
emerging beam is weaker because 
some incoming particles collide 
with scattering sites in the disk.  

dz
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also a very important factor in determining a solid’s heat capacity and thermal conductivity, as 
well as determining its expansion and contraction with temperature). The normal modes of 
vibration of the ion lattice consist of compression waves and transverse waves of various 
wavelengths and frequencies. As does a quantum harmonic oscillator, a lattice vibrational mode 
with resonant frequency 0ω  would have quantum energy levels separated by increments of 0ω . 
The low-frequency modes 0( )Bk Tω <  will be subject to the statistical-mechanical equipartition 
theorem when the solid is in thermal equilibrium, so the average energy stored in the lattice by 
each such mode will be proportional to temperature.4 

To estimate the effect of the thermal energy stored in the lattice vibrational modes on their ability 
to scatter a conductor’s charge carriers, we can think about it this way: the squared displacement 
amplitude of the vibration in a particular mode is proportional to its energy (to first order), 
which, on average, is proportional to T. The cross section for a collision of a charge carrier with 
this lattice distortion ( )Sσ  has units of area, and so should also vary as the square of the 
displacement amplitude (which has units of length). Thus, one would expect that S Tσ ∝  for 
each such mode. The number of lattice normal modes is determined by the number of atoms in 
the lattice,5 so we may assume that Sn  is at most a weak function of T for these thermal modes, 
except perhaps near the solid’s melting point. Thus, for the thermally-induced vibrations of the 
lattice S Sn Tσ ∝ , at least over a moderate temperature range well below the conductor’s melting 
point. 

Considering collisions with both the thermally-induced lattice distortions and those more 
permanent sites associated with dislocations, impurities, and the like, we may conclude that the 
overall collision cross-section, ,S Sn σ  should be approximately linear in T: 

 1
S Sn a bTλ σ− = ≈ +  (24.6) 

for some constants a and b, at least for temperatures far from the material’s melting point. In the 
case of carefully-prepared crystals or good conductors, the term proportional to T should 
dominate; for high-resistivity alloys or amorphous materials, the constant term may be the 
dominant one. What this implies is that for a good conductor, its conductivity will have a factor 
inversely proportional to T. 

                                                 
4 Actually the collection of all of these various lattice vibrational modes supports the propagation of wave packets of 
vibrations (as with waves on an elastic string). A wave packet with dominant frequency 0ω  and energy 0ω  is 
called a phonon (analogous to a photon). Phonons are, like photons, bosons: particles which are described by Bose-
Einstein statistics. The equipartition theorem will only apply when the density of phonons with a given frequency is 
so low that they are (on average) separated by distances much larger than the sizes of their wave packets. 
5 If N is the number of atoms in the lattice, then 3N  is the number of vibrational normal modes. To see why this is 
so, note that each atom’s position has 3 degrees of freedom, so there are 3N  mechanical degrees of freedom for the 
atoms in the lattice, but this must also equal the number of normal modes, since each mode corresponds to a single 
degree of freedom. 
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Two important points to remember about our discussion leading up to (24.6): first, we have 
claimed that charge carrier scattering by the ion lattice is associated with lattice distortions and 
not by direct scattering from the individual ions. In fact, it turns out that a metal with a flawless 
crystal lattice with perfect periodicity can have infinite conductivity: the energy eigenstates of 
the conduction electrons may be constructed from traveling waves with the same periodicity as 
the lattice. Thermally-induced lattice vibrations and crystal defects spoil this ideal scenario, 
however, so real crystals exhibit some resistance to conduction electron flow.6 

Second, the vibrational modes of the lattice are, of course, quantized as mentioned above, so the 
energy of a mode with frequency 0ω  may only be changed by increments of 0.ω  If 0 Bk Tω > , 
then it is unlikely that the mode will be excited from its ground state by thermal processes (such 
a mode is said to be frozen out). An estimate of the temperature required to excite the highest 
frequency mode of the lattice (with wavelength ≈  the interatomic spacing) is given by the Debye 
temperature, DΘ  (after the Dutch-American physicist Peter Debye). For copper 315KDΘ ≈ , so 
a few of its very highest vibrational modes may be frozen out during this experiment. At 
temperatures DT Θ , the freezing out of modes and the small energies associated with the 
remaining modes combine to increase a good conductor’s mean free path at a much faster rate 
with decreasing temperature: roughly approaching 5.Tλ −∝  At very low temperatures scattering 
is then dominated by the relatively permanent lattice deformations mentioned above. 

Returning to our previously derived expression for the conductivity, we can replace the 
relaxation time τ with ,Tvλ  and then explicitly include λ’s temperature dependence from (24.6): 

 
2 2

( )T T

q n q n
m v m v a bT

λσ
   

= =    +   
 (24.7) 

Thus we expect that the resistance, which is proportional to 1,σ −  should have a factor linear in 
the temperature T. The other factors n and ,Tv  may each have their own individual temperature 
dependence, as will be investigated in the next section. 

                                                 
6 Except, of course, for the low-temperature phenomenon of superconductivity, whose origin is completely different 
from the motions of the conduction electrons described here. 
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THE BAND STRUCTURE OF SOLIDS 

To complete our theory of the temperature dependence of the electrical conductivity given by 
equation (24.4), we must investigate the variations with temperature of the charge carrier number 
density n and the average random charge carrier speed Tv . To construct such a theory, we must 
consider the quantum-mechanical nature of the electrons in a solid — in particular, the structure 
of the energy levels they may occupy. 

Band structure basics 

A complete quantum mechanical theory of electrons in a solid would be, as one might expect, 
complicated and subtle (see this experiment’s Appendix A: Some details of the theory for more 
details). Here we summarize the features of the theory which are relevant to our study of DC 
electrical conductivity: 

1. The single-electron states in a crystalline solid are organized into a set of energy bands, with 
each band corresponding to a single electron orbital of an isolated constituent atom or 
molecule of the crystal. Each band contains a total of 2N single-electron states per unit 
volume, where N is the number density of ion lattice sites in the crystal. 

2. A typical energy band has a total width of a few to several electron volts (eV), and different 
bands may be separated by a similar energy, although some bands may overlap. The 
separation between two bands is called the energy gap Gε  (we use the symbol ε  for energy 
to avoid confusion with the electric field strength E). 

3. Electrons are fermions, so a maximum of only one electron may occupy any particular state. 
At temperature 0T =  (absolute zero, when the system is in its ground state), the electrons fill 
the available single-electron states in the various energy bands starting with the lowest 
energy state in the lowest energy band. At temperatures 0T >  the electron distribution 
among the various states (occupation probabilities) is given by the Fermi distribution, ( ),f ε  
described in General Appendix B, Fundamental Concepts of Thermal Physics. 

4. A completely full or completely empty energy band does not contribute to the electrical 
conductivity of the solid; only the electrons in partially-occupied bands may act as mobile 
charge carriers. Different partially-occupied bands conduct current independently of one 
another, and the total conductivity of the solid is given by the sum of the conductivities 
provided by these bands. 

Solids with no partially-occupied energy bands are insulators (or, possibly, semiconductors); 
conductors (mostly metals) have at least one partially-occupied energy band (even at 0).T =  

Conductors 

If some bands are partially-occupied at 0,T =  then the energy of the highest occupied level is 
called the Fermi energy, .FE  Typically this energy may be a few to several eV from the bottom 

http://www.sophphx.caltech.edu/Physics_6/Appendix_B_thermal_physics.pdf
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of the partially-occupied band; in this case it is useful to measure FE  from the nearest band edge. 
In the case of copper the electron density is 23 30.85 10 cmn = ×  in its partially-occupied band. 
Because this density is so high, the majority of these electrons occupy states with ( ) 1,f ε ≈ and 
their nearby states ( )BTkε∆   are very probably occupied as well. Thus these electrons behave 
as a degenerate Fermi gas, so their quantum characteristics play a major role in determining their 
collective behavior. For example, a gas of free and independent electrons at this density would 
have 7.0eVFE =  (compare this to the room temperature 1 40 eV),Bk T ≈  and in the ground 
state ( 0)T =  the average kinetic energy per electron should be approximately (3 5) 4eVFE ≈  
(General Appendix B equation B.18).  

Clearly, the kinetics of a metal’s conduction electrons with these densities can be expected to be 
completely different from that prescribed by classical statistical mechanics, particularly the 
equipartition theorem used in equation (24.3).7 What does not change, however, is the fact that 
the application of an external electric field can exert only a tiny perturbation on the velocity 
vectors of all but a handful of the electrons in the band, i.e. it remains true that ,T Dv v  where 

Tv  is the average random speed of those electrons carrying the electric current within the 
conductor. As it turns out, the current through such a conductor is actually carried by those 
electrons within a few Bk T  of the Fermi energy ,FE  and, as long as ,F BE k T  the volume 
number density of these electrons is very nearly independent of temperature. In fact, the 
conductivity of a metal such as copper may be approximated by assuming that essentially all of 
the partially-occupied band’s electrons are collectively carrying the current as though they all 
had random kinetic energies of FE≈  (see the section entitled Semi-classical charge carrier 
dynamics in a metal in this experiment’s Appendix A for a derivation of this result).  

Consequently, in expression (24.7) for the conductivity σ, the charge carrier density n and their 
thermal speed Tv  should be nearly independent of temperature, so that a metal’s resistance 
should depend only on the temperature variation of the mean free path λ; thus a metal’s 
resistance should vary approximately linearly with temperature T. 

SEMICONDUCTORS 

Semiconductors have electrons occupying only completely filled bands (at least at cold 
temperatures), characteristic of insulators. What makes them different, though, is that the bottom 
of the nearest empty energy band (called the conduction band) is only about an electron volt or 
so away from the top of the highest-energy filled band (the valence band). Consequently, random 
thermal jostling of the ions in the lattice can very occasionally impart enough energy to an 
electron near the top of the valence band to excite it into a level near the bottom of the 

                                                 
7 Arnold Sommerfeld, the German physicist, modified Drude’s theory of metals to incorporate the Fermi distribution 
of electron energies in 1927. A great physicist and teacher, Sommerfeld’s students went on to win seven Nobel 
prizes, including Werner Heisenberg, Wolfgang Pauli, Linus Pauling, and Peter Debye. 
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conduction band. In this case both the valence band 
and the conduction band become partially occupied 
(although just barely), and the material becomes a poor 
conductor (poor because only a tiny fraction of the 
valence electrons get bumped up into the conduction 
band). The higher the temperature, the greater the 
number of valence electrons thermally excited into the 
conduction band — the number goes as: 

 3 2 (2 )BgE k T
in T e−∝   (24.8) 

where gE  is the magnitude of the energy gap between 
the valence and conduction bands. In the case of 
silicon, this amounts to on the order of 1010  electrons 
per cm3 at room temperature (compare with copper’s 

2310  per cm3). The archetypal semiconductors are the 
elements silicon ( 1.12eV),gE =  and germanium 
( 0.67eV),gE =  each of which forms a diamond crystal 
lattice with four covalent bonds per atom. Several 
compounds and alloys form commercially important semiconductors, including GaAs, InP, 
GaAsP, and InGaN. 

Unlike the case of a metal’s conduction electrons, the number densities of a semiconductor’s 
conduction electrons and holes (defined below) in their respective bands are low (much smaller 
than the crystal’s atomic number density N ). Therefore, Pauli Exclusion plays only a minor role 
in the kinematics of these low-density fermions, so a semiconductor’s charge carriers will 
distribute themselves in a way very accurately described by the classical Maxwell distribution, 
and the overall occupation densities go as the left-hand curves in Figure 3. 

Electrons and holes 

The diagram in Figure 3 illustrates the distribution of electrons near the bottom of the conduction 
band and the distribution of unoccupied single-electron states near the top of the valence band 
for a semiconductor at a fairly high temperature. The Boltzmann factor exp( )BE k T−∆  gives the 
relative probability that any one state is occupied in the conduction band or unoccupied in the 
valence band, where ∆E is the magnitude of the difference in energy between the state and its 
band edge, and the dynamics of the relatively small number of electrons in the conduction band 
is quite accurately approximated by treating them as classical particles (with a negative charge of 

,eq−  of course).  

In the valence band only a small fraction of the states near its top are unoccupied. Interestingly, 
the dynamics of the remaining electrons near the top of the valence band are such that they have 
a negative effective mass, since the density of states increases with decreasing energy near the 

 
Figure 3: Densities of states and occupa-
tions by electrons (conduction band) and 
holes (valence band) for a pure semi-
conductor (intrinsic charge carriers only); 
energy increases in the vertical direction.  
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top of the band (the concept of the effective mass *m  of a charge carrier is described in this 
experiment’s Appendix A). The consequence of this unusual electron behavior near the top of the 
valence band is that the unoccupied quantum states evolve as though they were occupied by 
positively charged particles ( )eq+  with a positive effective mass and with energies increasing as 
they move further down from the band top in an otherwise empty band! These “positive charge 
carriers” near the top of the valence band are called holes. In fact, the behaviors of holes near the 
top of a semiconductor valence band are completely equivalent to those of “real” particles such 
as the conduction band electrons, so their particle nature is just as valid. Thus, when an electron 
is excited from the valence band to the conduction band, two charge carriers are created: the 
electron ( )eq−  and the hole it left behind ( ).eq+ 8 Since the energy an electron must gain to cross 
the energy gap between the valence and conduction bands is at least gE , but two particles were 
created by this transition, the required energy per particle is 2gE  — this is a convenient “hand-
waving” explanation of the extra factor of 1 2  in the Boltzmann expression (24.8). 

According to our original derivation of the conductivity, equation (24.4), the conductivity of a 
semiconductor band is proportional to the volume density of its charge carriers (electrons in the 
conduction band, holes in the valence band); thus a pure semiconductor has a conductivity which 
is a very strong function of temperature, rising rapidly as temperature increases, as indicated by 
expression (24.8). This effect is used to make a thermistor: a resistor with a large, negative 
temperature coefficient (decreasing resistance as temperature rises) which acts as a very 
sensitive, fast-acting temperature sensor for the range of about −100°C to +150°C. Using 
measured values for the effective electron and hole masses and the band gap energies, using 
Appendix A equations (24.A.5) through (24.A.7) will give the ionization fraction ( )in N  of the 
intrinsic semiconductors germanium and silicon at 300K to be: 

 
10

Ge
13

Si

( 300K) 5.4 10

( 300K) 3.0 10
i

i

n T N

n T N

−

−

= ≈ ×

= ≈ ×
  (24.9) 

As can be seen from these numbers, at room temperature the probability that an individual 
valence electron is thermally excited across the energy gap and into the conduction band in one 
of these semiconductors is incredibly tiny — typically smaller than, for example, the chances of 
a particular holder of a single ticket winning a major state lottery jackpot. 

Impurities and doping 

Semiconductor materials are custom-made to be much more flexible and useful through the 
process of doping: introducing various amounts of impurity atoms into the semiconductor crystal 

                                                 
8 Interestingly, even a metal with a partially-filled conduction band may have charge carriers more appropriately 
characterized as holes with charge .eq+  This “anomalous” sign of the metal’s charge carriers is detectable in 
experiments measuring the Hall effect in a magnetic field. For example, aluminum’s charge carrier density in the 
presence of a large magnetic field is best described as having one hole per lattice ion. 
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which have a valence different from that of the semiconductor. For example, mixing a small 
amount of phosphorous (valence 5) into a silicon crystal will introduce a random distribution of 
atoms each with an extra valence electron left over after it forms bonds with surrounding silicon 
atoms. What would be the consequences of these extra electrons to the physics of the material? It 
turns out that the energy of this extra valence electron is very close to the energy of the bottom of 
the conduction band (in the case of P in Si, the energy is only 0.044 eV below the conduction 
band). If there are relatively few of these donor impurity atoms, then it is very likely that such 
electrons will eventually be excited into the conduction band by the thermal motions of the ions: 
once there they quickly drift away from their parent impurity atoms and are unlikely to 
recombine with them. So even if the ambient temperature is so cold that almost no electrons 
would be excited from the valence band to the conduction band, electrons from donor impurities 
will nearly all eventually find their way into the conduction band, providing a largely 
temperature-independent cadre of negative charge carriers ( )eq−  along with the same number of 
fixed, positively-charged ions distributed throughout the crystal lattice. Such a material is called 
an N-type semiconductor. 

Similarly, introducing a valence 3 impurity atom (such as aluminum into silicon) will leave an 
unsatisfied bond because of the missing electron. Again, the energy required to promote a nearby 
silicon valence electron into this spot is small compared to the semiconductor’s energy gap 
(0.057 eV for Al in Si). Thermal agitation will eventually do the trick, and the vacated valence 
state becomes a hole which quickly drifts away from the impurity atom, trapping the promoted 
electron at the impurity site. Thus these acceptor impurity atoms become fixed, negatively-
charged ions in the lattice, whereas an equal number of holes form a nearly temperature-
independent group of positive charge carriers ( )eq+ , creating a P-type semiconductor. 

Adding impurities to a semiconductor can not only introduce charge carriers (called extrinsic 
charge carriers), but will also suppress the thermal creation of electron-hole pairs described by 
equation (24.8), called intrinsic charge carriers. This is because the product of the number 
densities of the conduction electrons ( )cn  and holes ( )vp  is related to the number density of the 
intrinsic charge carriers that would be thermally created in a pure (undoped) semiconductor ( )in  
by the laws of statistical mechanics: 

 2
c v in p n=   (24.10) 

For example, the addition of 1 part per million phosphorous (a donor impurity) to a silicon 
crystal 6( 10 )dN N −=  would introduce 165 10×  conduction electrons per cm3, making the 
material an N-type semiconductor. With in N  about 7 orders of magnitude smaller at room 
temperature (24.9), equation (24.10) would require that there be only 5000vp   holes per cm3, 
13 orders of magnitude smaller than !cn  These holes are called minority carriers in the N-type 
silicon under discussion; the conduction electrons are the majority carriers. As the 
semiconductor’s temperature rises, in  and thus the minority carrier number density will 
eventually become comparable to that of the extrinsic charge carriers; as the temperature is 
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raised even further the extrinsic carrier population becomes an ever less important contributor to 
the overall charge carrier density, and the electron and hole densities both approach .in  At this 
point the charge carrier variation with temperature is well-described by (24.8).  

The conductivity of a semiconductor depends on the total charge carrier density c vn p+  since 
both the conduction and valence bands can conduct electrical current. In the case of a pure 
semiconductor 2c v in p n+ = , so the charge carrier density will vary with temperature as given by 
(24.8). Introducing extrinsic charge carriers by doping the semiconductor with impurity atoms, 
however, complicates the situation. For the sake of argument, assume that the semiconductor is 
N-type with donor number density ,dN  and assume that the temperature is high enough that all 
but a negligible fraction of the donor impurity atoms are ionized. Since the only other source of 
electrons in the conduction band is from ionization of the intrinsic semiconductor atoms 
(creating an equal number of holes), it must be the case that c vdn N p= + . With this expression 
and equation (24.10), the total charge carrier density must be: 

 2 24c v idn n p N n= + = +   (24.11) 

Expression (24.11) makes it clear that, as expected, at low temperatures when ,i dn N  then 

dn N→ ; when the temperature is high, then 2 in n→ . The thermal variation of (24.11) is 
contained in ( ),in T  given by (24.8). Figure 4 shows how n varies with temperature for various 
levels of impurity concentration in germanium. 

Figure 4: Relative charge carrier density n N  
v. temperature given by equation (24.11) for 
germanium with impurity concentrations of 0.1 
to 10 parts per billion. The intrinsic ionization 
fraction in N  is given by (24.9) at room 
temperature and varies with temperature as in 
(24.8). 2 in N  is shown by the dashed line. 

 
Because of the low densities of the conduction electrons and holes in their respective bands, their 
velocity distributions will be fairly accurately described by the classical Maxwell distribution of 
an ideal gas of particles at temperature T.9 Thus their average thermal speeds will vary with 
temperature as 1 2 ,Tv T∝  as shown in expression (24.3), with masses given by their respective 
effective masses, *m  (defined in this experiment’s Appendix A). Since the crystals used to create 
doped semiconductor materials are usually of very high quality, the mean free path λ of a charge 

                                                 
9 With two major differences from a classical ideal gas: (1) they reach thermal equilibrium through collisions with 
the ion lattice and not through collisions among themselves; and (2) their number density n is in general a strong 
function of temperature T. 
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carrier should vary as 1.T −  (cf. equation (24.6)). Consequently, the relaxation times of the 
conduction electrons and holes should vary with temperature as in equation (24.12). 

 3 2
Tv Tt λ −= ∝   (24.12) 

Thus a semiconductor’s conductivity σ, which from (24.4) varies with the product ,nt  should 
display an overall temperature variation given by the product of (24.11) with (24.12), according 
to the simple theoretical model presented here. 

 

   
Figure 5: Plots of the theoretical temperature variation of the resistance of a doped semiconductor 
(germanium, with 0.67eV ).gE =  The doping level is such that 10 (300K).d iN n= ×  Left: conventional 
plot of R v. T; right: plot of log ( )R  v. 300K .T  Also shown are the asymptotic purely extrinsic ( dN  
only) and purely intrinsic behaviors (dashed lines). These asymptotic curves cross where 2 .d iN n=  

Figure 5 shows the expected temperature variation of the resistance of a typical doped (impure) 
semiconductor according to the theory presented here ( 1 ,R nt∝  with n and τ given by equa-
tions (24.8), (24.11), and (24.12)). The theory is plotted two different ways; each plot has its 
advantages when analyzing a data set. 
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EXPERIMENT APPARATUS 

    
Figure 6: The experiment apparatus, with a schematic diagram of its various components. A: data 
acquisition unit; B: heater power control; C: stirring motor; D: insulated flask containing dielectric 
fluid; E: platinum temperature sensor; F: array of samples under test; G: fluid stirring paddle; H: 
resistors used to heat the fluid. 

The apparatus used for the experiment is shown in Figure 6. The heart of the system is its array 
of resistance samples along with a platinum temperature sensor (F and E in Figure 6 and also 
shown in the photo in Figure 7 on the next page). Measurement of the resistance values and the 
temperature is accomplished by a precision data acquisition unit operated under computer 
control. The samples are immersed in a dielectric (electrically insulating) fluid contained in a 
vacuum-insulated flask. A paddle attached to a motor continuously stirs the fluid so that its 
temperature is kept uniform as it flows around the samples and a set of resistors used as a heating 
element (H in Figure 6). The circulating fluid acts as a heat bath which transfers heat to the 
samples and the temperature sensor to keep them all at a common temperature. After initially 
cooling the fluid using liquid nitrogen (LN2), the fluid is then heated by the power dissipated in 
the heater resistors while the data acquisition unit periodically measures and records the 
temperature and the corresponding sample resistances. 

Resistance samples 

The five resistance samples are attached to a rigid framework of stainless steel rods and acrylic 
spacers as shown in the photo in Figure 7. The framework is immersed in the bath of dielectric 
fluid which keeps the samples in thermal equilibrium with it and each other (as long as the bath 

D

F
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E

G

H

A
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temperature does not change too rapidly). Each sample is attached to the data acquisition unit by 
a network of four wires as will be explained in a later section. The various samples are identified 
by the computer data acquisition program as resistors R1 through R5 as shown in Table 1. The 
sample output data file shown in Figure 7 demonstrates how the resistance data are organized for 
further analysis. 

Table 1: Resistance Samples 

R1: Semiconductor rod 

R2: Commercial resistor 

R3: Copper wire 

R4: Thermistor 

R5: Manganin wire 

Temperature sensor 

The temperature sensor is a precision platinum resistive temperature detector (RTD) with a 
design resistance of 100Ω at 273.16 Kelvin (the triple point of water, 0.01°C). It is designed to 
meet the specifications of the international standard known as IEC 60751 Class A, which 
requires that its temperature measurement error be less than (0.15K 0.002 273.16K ),T± + × −  
which is less than ±0.37K over the temperature range of this experiment. Details of its 
specifications are available at: 

   http://www.sophphx.caltech.edu/Lab_Equipment/RTD_temperature_probe.pdf  

The RTD sensor (shown as element B in the photo in Figure 7) has a small thermal mass and a 
relatively large surface area, so its temperature will remain very close to that of the surrounding 
dielectric fluid as the experiment proceeds. Because platinum is a good metallic conductor, its 
resistance changes very nearly linearly with temperature. The standard temperature coefficient of 

 
Figure 7: An example of the data file output (left) and the array of samples (right). A: 
semiconductor (R1); B: platinum temperature sensor; C: coil of manganin wire (R5); D: 
commercial precision carbon film resistor (R2); E: thermistor (R4); F: coil of copper wire (R3). 

# Resistivity Experiment v3.0
# 
# Data Acquisition Unit: Agilent Model 34970A
# Start Time: 3:20:12.014 PM 1/24/2014 ; Start Temp: 232.1530 K
# Time (s)   Temp (K)         R1         R2         R3         R4         R5

0.000000   232.1530   757.5709   2735.109   4.193582    1393884   26.86568
53.86600   233.1510   762.7967   2732.739   4.214232    1304626   26.86892
94.63900   234.1900   768.3800   2730.243   4.236844    1186270   26.87157
136.3170   235.2280   774.0844   2727.689   4.259203    1109731   26.87405
176.2270   236.2380   779.4262   2725.294   4.280990    1042045   26.87690
218.6790   237.2790   785.1033   2722.823   4.304552   976368.1   26.87810

E

F

C

B

A D

http://www.sophphx.caltech.edu/Lab_Equipment/RTD_temperature_probe.pdf
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resistance (called α) specified for the platinum alloy used is 3.85mΩ Ω K  (at 0°C), so a sensor 
with a 0°C resistance of 100.0Ω should measure 138.5Ω at 100°C. 

Measurement and data acquisition 

The resistances of the samples and the platinum RTD are measured by an Agilent (now Keysight 
Technologies) model 34970A Data Acquisition / Switch Unit (DAQ) with an installed 34902A 
multiplexer module. This device contains a precision digital multimeter which performs the 
resistance measurements; the multiplexer module contains relays which connect the various 
samples to the multimeter. A program stored in the unit controls the sample selection and 
measurement process; data are transferred to a host computer using the device’s GPIB interface 
(also known as an IEEE-488 interface). The User’s Guide for the DAQ is available here: 

   http://www.sophphx.caltech.edu/Lab_Equipment/Agilent_34970A_User_Manual.pdf  

The preset, internal DAQ program for this experiment commands it to continually monitor the 
platinum RTD resistance and determine the dielectric fluid temperature while in its idle state, 
and the instrument displays the measured temperature in °C on its front panel. When commanded 
by the host computer, the DAQ momentarily leaves this idle state and executes its measurement 
program, cycling through the RTD and the resistance samples and reporting the temperature and 
resistance measurement data to the host computer for display and recording. 

The resistance measurements of both the samples and the RTD are accomplished using the 4-
wire ohms measurement technique described starting on page 291 of the DAQ User’s Guide 
(link above). Two wires are used by the DAQ to apply a known, precision current through the 
sample; two separate wires, attached across the sample, connect the DAQ’s precision voltmeter 
to it. This method removes the wiring resistance from the measurement, resulting in a more 
accurate result, especially if the sample has a relatively small resistance (as do the RTD and the 
copper sample). 

 

http://www.sophphx.caltech.edu/Lab_Equipment/Agilent_34970A_User_Manual.pdf
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PROCEDURE AND ANALYSIS 

The procedure for this experiment divides naturally into 4 distinct phases: 

1. Initial setup and familiarization. 
2. Cool-down to −40°C. 
3. Controlled warm-up to +110°C and primary data acquisition. 
4. Overnight cool-down to room temperature and secondary data acquisition. 

Each of these phases is discussed below. 

Initial setup and familiarization 

Start the Resistivity application program; 
if the data acquisition unit is properly 
connected to the host computer, then the 
software should successfully initialize. 
The main control window for the 
program is shown in Figure 8 at right. 
Turn on the program’s context help 
window (selected using the Help menu) 
and hover over the various controls for a 
description of their operation.  

The DAQ unit should display the fluid 
temperature in degrees Celsius, which 
should be within a few degrees of room 
temperature. Start the stirring motor and 
adjust its speed so that the fluid is stirred 
just strongly enough to see motion of the 
fluid surface; don’t stir so hard that large 
waves and bubbles appear in the fluid 
(you aren’t making a smoothie, after all). 

The heater should be turned off, and the 
cooling fan should be disconnected and removed from the top of the apparatus. 

Set the trigger mode to Time with an interval of around 1 second. Specify a new data file name to 
the control program and acquire several data points. Examine the data for the temperature and 
various sample resistances using the Data Plots window. You will use this data to estimate the 
noise levels in the various measurements which you may then assign as uncertainties to your 
data. 

   
Figure 8: The main control window of the Resistivity 
application software.  
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Cool-down to −40°C  

Read through this section completely before beginning the cool-down process. 

You will cool the dielectric fluid by slowly pouring small amounts of liquid nitrogen (LN2) into 
the flask using a funnel. The very cold LN2 will boil vigorously when it contacts the fluid, 
whereas some of the fluid will freeze. As long as the frozen fluid layer doesn’t get too thick and 
extensive, the stirring motor will continue to circulate warmer fluid to the frozen surface, causing 
the layer to melt.  

DO NOT pour in a large quantity of LN2 all at once! 
Pouring a large amount of LN2 into the dielectric fluid will cause very strong splashing 
and atomizing of the fluid. These vapors will spread a film of fluid over all nearby 
surfaces, including you! The fluid is not a health tonic!  

If the motor stalls because of ice buildup around the shaft to the stirring vane, twist 
the shaft using your fingers to attempt to free it. If this proves to be impossible, then 
unplug the stirring motor and fetch the lab instructor! 

It should take 15 minutes or so to reduce the 
fluid temperature to the −40°C target. As the 
fluid gets colder, it will take longer for the 
surface ice to melt. Always wait for nearly all 
of the ice to melt before introducing more LN2. 
As the displayed temperature passes through 
−35°C, wait for the temperature to become 
reasonably stable before adding each 
subsequent dose of LN2. 

By acquiring a data set and watching the 
temperature v. time graph, you will be able to 
tell when the rate of change of the fluid’s 
temperature becomes small as the fluid and 
samples approach thermal equilibrium. Don’t 
start the warm-up phase until the samples and 
fluid are near this equilibrium. 

 
Figure 9: Cooling the dielectric fluid using LN2. 
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Controlled warm-up to +110°C 

Name a new data file for your primary data set and configure the data acquisition to be triggered 
by a temperature change of about 0.5K to 1.0K. 

The heater resistors immersed in the dielectric fluid are powered from the 120VAC power line 
using a Variac® autotransformer. The single-winding autotransformer does not isolate its output 
from the 120VAC source, so be careful to not touch any exposed conductors attached to it. Once 
the temperature of the fluid has stabilized near −40°C, begin the warm-up by turning on the 
Variac and setting its output voltage to 130V. The Variac’s connection to 120VAC power is 
through a timer which will shut off power to the heater when it times out. Set the timer to 3 hours 
and activate its output; your TA can assist you if necessary. 

Start the data acquisition and make sure that the temperature is increasing by monitoring the 
temperature plot. As the temperature rises, periodically check the various resistance plots and 
consider the variations v. temperature they begin to define. The data file is opened, rewritten, and 
closed following each data point acquired by the DAQ, so you can open it using CurveFit at any 
time during the data acquisition to attempt some preliminary data analysis in lab. Also spend this 
time reviewing the theory presented by these notes so that you are thoroughly familiar with its 
concepts and the resistance variation expected for a good conductor and for a semiconductor.  

Do not allow the fluid temperature to exceed +110°C. 

Terminating the warm-up and beginning the overnight cool-down 

Turn off the heater Variac as the fluid temperature just reaches +110°C, and then terminate the 
data acquisition. Ask your TA or the lab administrator to show you how to rig the cooling fan 
atop the fluid flask and connect its power cord to begin cooling the fluid. 

Do not overwrite your warm-up data file with the cool-down data! 

Identify a new data file and configure the data acquisition to trigger on a time interval of about 
100 seconds. Begin the data acquisition; this cool-down period will continue overnight unless 
another lab section requires the experiment apparatus sooner. The lab administrator will 
terminate this data acquisition the following weekday morning. Because the file is rewritten and 
saved for each data point, you will not need to access the application program to retrieve this 
final data set. 

Double-check that the heater Variac is turned off. 

Thoroughly wash your hands when you are finished to remove any traces 
of the dielectric fluid. 
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 DATA ANALYSIS 

The primary objectives of your data analysis for this experiment are to: 

(1) Test the theoretical model for the temperature dependence of the conductivity of a good 
conductor (boxed paragraph on page 9) using the copper resistance data. 

(2) Test the theoretical model of the conductivity of a semiconductor (boxed paragraph on 
page 14) using the thermistor resistance data (pure semiconductor) and the semiconductor 
data (doped semiconductor). 

Byproducts of your analysis should include accurate estimates (with uncertainties) of: 

(1) The temperature coefficients of resistance at 0°C and 20°C of the copper sample; your 
20°C value should be compared to the published value for annealed copper wire.10 

(2) The gap energy (in eV) of the thermistor’s semiconductor material. 
(3) The gap energy (in eV) and doping concentration (fraction of atoms which are dopants) 

for the semiconductor rod sample. Determine which semiconductor (silicon or 
germanium) is most likely the material making up the sample. 

In addition, thoughtful, mainly qualitative comments regarding the other two samples, the 
commercial resistor and the manganin wire, should be made. 

Uncertainty estimates (error bars) due to noise in the measurements may be derived from an 
analysis of the initial data you obtained prior to the LN2 cool-down. The overnight cool-down 
data may be compared to the warm-up data to estimate the magnitude of systematic errors in the 
sample temperature measurements due to temperature gradients between the samples and the 
dielectric fluid. 

Of course, the systematic calibration uncertainties of the temperature probe and the resistance 
measurements will introduce additional uncertainties into the determination of the copper 
coefficient of resistance and to the gap energies of the semiconductors. Include these additional 
uncertainty sources in your parameter value estimates. Specifications of the instruments may be 
found in documents located here: http://www.sophphx.caltech.edu/Lab_Equipment/ .  

Many simplifications were made in deriving the theory presented here of the temperature 
variation of DC electrical conductivity. Do you see evidence which may indicate that these 
simplifying assumptions overlook effects present in your data? 

 

                                                 
10 The temperature coefficient of resistance at temperature 0T  (also called α) is defined to be: 

0 0

1
( ) T

dR
R T dT

α ≡  

http://www.sophphx.caltech.edu/Lab_Equipment/
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PRELAB PROBLEMS 

1. What would be the speed of conduction electrons with kinetic energy equal to copper’s Fermi 
energy of 7eV? Assume that these electrons behave as though they were free and 
independent, and that their effective mass is equal to the mass of a free electron (i.e., 2mc =  
0.511MeV). What would be the conduction electron number density in cm−3? You might 
want to review General Appendix B, Fundamental Concepts of Thermal Physics.  

2. If the resistivity of copper at room temperature is 1.6 micro-ohm centimeters, and given the 
mass and number density from problem 1, then according to the simple conductivity model 
presented in the text, what should be the relaxation time ?t  If the charge carriers are moving 
at the speed you calculated for copper’s Fermi energy of 7eV, then what would be the charge 
carriers’ mean free path λ in Angstroms (Å)? How does this compare to the interatomic 
spacing of 2.55Å? 

3. One of the resistance samples is a coil of Manganin wire. Look up the composition of this 
alloy of copper. How does its published resistivity compare with copper’s 1.6 micro-ohm 
centimeters? Would you expect Manganin to show a variation of resistance with temperature 
which is greater than, less than, or about the same as that for copper? Why? 

4. Derive expression (24.11) on page 24-13 for the total charge carrier density n in a 
semiconductor. Consider the discussion in the text leading up to that equation along with 
equation (24.10). Show that (for an N-type semiconductor) the conduction electron and hole 
densities are: 

 
( )
( )

1
2
1
2

c d

v d

nn N

np N

+=

−=
  (24.13) 

where n is given by (24.11). 

5. Assume a thermistor is constructed from a crystal of pure semiconductor (intrinsic charge 
carriers only) with an energy gap 0.6eV.gE =  What should be the approximate ratio of its 
resistance at −40°C to its resistance at 110°C? 

6. What is the published temperature (the boiling point) in Kelvin of liquid nitrogen (LN2) at 
standard atmospheric pressure? How does this compare to the minimum experiment test 
temperature of −40°C? 

 

http://www.sophphx.caltech.edu/Physics_6/Appendix_B_thermal_physics.pdf
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APPENDIX A: SOME DETAILS OF THE THEORY 

Formation of energy bands in a solid 

The conduction electrons in a solid aren’t really free, of course, because they must move about in 
the generally periodic electric potential of the ion lattice. Consider this thought experiment: 
position a huge number N of atoms such as copper into an array with the same structure as found 
in their crystalline solid state, but with their atomic separations increased by a few orders of 
magnitude.  

Because of the atoms’ large separations from each other in this initial configuration, the 
individual, electrically neutral atoms would behave quite independently of each other, and their 
electrons will be confined to the atomic orbitals expected for a single, isolated atom. An array of 
wave functions of a particular atomic electron orbital over the entire assemblage of atoms would 
form a function with the overall periodicity of the atomic array, but, because of the large atomic 
separation, the amplitudes of these wave functions would very nearly vanish in the large volume 
between the various atoms. Since each electron orbital in an atom corresponds to two electron 
states (spin up and spin down), any particular assemblage of atomic orbitals could accommodate 
a total of 2N electrons (we ignore the effects of spin-orbit coupling on the wave-functions). 

Now consider what would happen as the array of atoms is slowly and uniformly compressed, so 
that the atomic separations gradually approach their values found in an actual solid. As the atoms 
grow nearer, the wave functions of the outer (valence) electrons will start to overlap those of 
each atom’s nearest neighbors. Consequently, the electrons in these states will start to experience 
significant additional electrostatic forces, not only from the atoms’ nuclei but also from each 
other. These outer orbitals’ states will begin to mix ever more strongly as the atoms get closer 
(meanwhile, the much more compact inner electron orbitals will still remain well-separated and 
essentially distinct). 

This overlap of the original, outer atomic orbitals implies that the actual wave-functions for these 
states must change as the atoms get near each other. The states will no longer be identifiable with 
a single atom, but will require that electrons occupying them be associated with several nearby 
atoms. This mixing, of course, is the origin of the chemical bonds between the atoms. As far as 
our crystalline solid is concerned, there will still be a total of 2N distinct electron states 
associated with each original array of corresponding atomic orbitals, and the modified states will 
still share in the periodicity of the crystal lattice. The energies of these new states, however, will 
generally be split into many nearly equal but distinct values, so that what was originally a 
common, single energy value for the states when they were associated with separate, identical 
atomic orbitals becomes a band of distinct wave-functions with closely-spaced energies, the band 
becoming wider as the atoms get closer. 
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Thus a set of bands of distinct wave-functions will form in the solid, one band corresponding to 
each of an isolated atom’s atomic orbitals (or to each member of some complete set of linear 
combinations of these orbitals). The width in energy of a typical band is on the order of a few to 
several electron volts (the same order of magnitude as the binding energy of a valence electron in 
one of the atoms), and adjacent bands associated with the valence electrons are often separated 
by a similar energy, although they may also overlap (depending in a complicated way on the 
geometry of the crystal structure and the nature of the material’s interatomic bonds). 

The wave-functions of the energy eigenstates in these various bands in a crystal may be chosen 
to be plane waves with well-defined wave vectors ,k



 each modulated by some function with the 
periodicity of the crystal lattice,  i.e. ( ) exp( ) ( ),k kr i k r rψ φ= ⋅ 



    where ( ) ( )k kr R rφ φ+ = 



   for any 
displacement R



 which takes the crystal lattice into itself (this observation is known as Bloch’s 
Theorem, after the Swiss physicist Felix Bloch). An equivalent way of stating this theorem is: 

 ( ) exp( ) ( ),k kr R i k R rψ ψ+ = ⋅ 


 

    (24.A.1) 

Equation (24.A.1) means that for any displacement R


 which takes the crystal lattice into itself, 
each energy eigenstate wave-function is changed by only a phase factor determined by its 
associated wave vector .k



 This fact has a profound implication: the range of values for the set of 
unique wave vectors is bounded, because adding or subtracting any reciprocal lattice wave 
vector K



 to k


 doesn’t change the wave-function.11 As a particular state’s k


 evolves under, for 
example, the influence of an applied electrostatic field ( ),dk dt qE=




  then as k


 increases to 
the point that it passes through the plane in k-space defined by 2K



, its value wraps to 
.k k K→ −

 


 

With each allowable wave-vector k


is associated a “momentum” p k=




 , called the state’s 
crystal momentum. The spacing of the allowable crystal momentum vectors p  in a band is the 
same as for the free and independent electrons described in General Appendix B (determined by 
the volume of the crystal and the uncertainty principle: 3 3 Volume).d p h=

   

As already described, each band will have enough distinct quantum states to contain twice the 
number of electrons as there are atoms (or molecules) in the macroscopic solid crystal (i.e. 

22 23 310 10 cm− ), so the individual electron states in a band are generally separated in energy 
by a microscopic fraction of an electron volt. Each of these crystal momentum eigenstates in a 
band also corresponds to a well-defined electron velocity vector: 

 1 ( )kv kε−=





 ∇   (24.A.2) 

where ( )kε


 is the energy associated with the single electron state with wave vector k


 (recall 
that for free electron states, 2 2( ) (2 )k k mε =



  and thus ;v k m=




  the expression (24.A.2) is a 

                                                 
11 The reciprocal lattice of a crystalline structure consists of those wave vectors K



 such that exp ( ) 1iK R⋅ =
 

 for 
any displacement R



 which takes the crystal lattice into itself. See Experiment 12: Electron Diffraction for a more 
thorough discussion of this topic. 

http://www.sophphx.caltech.edu/Physics_6/Appendix_B_thermal_physics.pdf
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generalization of this result to the case of the bands in a crystalline solid). What (24.A.2) implies 
is that in a perfect crystal each conduction electron wave function with well-defined ,k



which is 
also an energy eigenstate (“stationary” state), is associated with a well-defined (and generally 
non-zero) electron velocity. Thus, in a perfect crystal, conduction electron motion with a well-
defined velocity could persist forever — such a crystal would be an ideal conductor with zero 
resistance! Thermally-induced lattice vibrations and crystal defects spoil this ideal scenario, 
however, so real crystals exhibit some resistance to conduction electron flow.12 

Thermal dependence of semiconductor charge carrier densities 

This section provides some brief statistical mechanical arguments and calculations to justify the 
assertions regarding the conduction electron and hole densities. To follow the logic in this 
section it would be wise to review the sections concerning fermions and the Fermi-Dirac 
distribution in General Appendix B. The text in this and the following section refers to concepts 
and expressions from that discussion wherever it is convenient. 

A pure semiconductor (no dopants) at 0T =  will have a full valence band and an empty 
conduction band. Even at temperatures well above 300K it will be true that BgE k T , and 
therefore the occupation probabilities of valence band single-electron states are very nearly 1 and 
those of the conduction band are very nearly 0. This result is consistent with the Fermi-Dirac 
distribution of equation (B.23) of General Appendix B only if the chemical potential μ is located 
in the energy gap relatively far from its edges — the energy of the top of the valence band ( VE ) 
and the bottom of the conduction band ( CE ). In fact, μ is usually very near the center of the band 
gap of a pure semiconductor, and serves the role of the Fermi energy in a metal. Thus the 
probability that a typical conduction-band single-electron state is occupied is 

 ( ) ( )
( )

1( )
1

C C

C

B B B

B

E E k T E k T E k T
E E k T

f E e e e
e

µ µ
µ

− +∆ − − − −∆
+∆ −

∆ = ≈ =
+

  (24.A.3) 

where ΔE is the energy difference between the state and the bottom of the conduction band. 
Since the energy width of the conduction band is on the order of a few eV ( ),Bk T  the 
momentum-space structure of these states near the bottom of the conduction band is analogous to 
that of the free and independent electrons in a box considered in General Appendix B. Thus the 
conduction band density of single-electron states (within several Bk T  of CE ) is given by 
expression (B.17) to be 

                                                 
12 Except, of course, for the low-temperature phenomenon of superconductivity, whose origin is completely different 
from the motions of the conduction electrons described here. 

http://www.sophphx.caltech.edu/Physics_6/Appendix_B_thermal_physics.pdf
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3 2

3( ) 8 2mg E E
h

π∆ ≈ ∆   (24.A.4) 

and the expected number density of the electrons in the conduction band ( )cn  is 

 3 2

3

( )

0

( )

*(8 )where: ( ) ( ) ( )
4

C B

B

C

B
C

E k T
c

E k T c

n N T e

m k TN T g E e d E
h

µ

π

− −

∞ −∆

=

= ∆ ∆ ≈∫
  (24.A.5) 

You may think of CN  as the “effective” number of single-electron states (per volume) available 
in the conduction band (within a few Bk T  of the band edge). A similar calculation for the 
probability that a typical single-electron state near the top of the valence band is empty (1 f− ) 
and the resulting number density of holes in the valence band results in (24.A.6). 

 3 2

3

( )( )

*(8 )where: ( )
4

V B
V

B
V

E k T
v

v

p P T e

m k TP T
h

µ

π

− −=

≈
  (24.A.6) 

It should be noted that *cm  and *vm  in these equations are the conduction electron and hole 
effective masses in the periodic potential of the semiconductor crystal (defined in the next 
section); they are each within a factor of order unity of the free electron mass in many common 
semiconductor materials and may be derived from the actual density of states function ( )g E∆  in 
(24.A.4) by solving that equation for m. Note that the conduction electron and hole densities 
given by (24.A.5) and (24.A.6) are valid even for doped semiconductors so long as the 
approximation in (24.A.3) is valid, i.e. the charge carriers are not degenerate ( 1f   for the vast 
majority of the occupied single-particle states). This will turn out to be the case if the dopant 
concentration is not too large and the semiconductor is not at a very low temperature so that μ is 
at least several Bk T  from the band edges.  

An expression for cn  and vp  which doesn’t involve the chemical potential μ may be formed by 
taking the product of (24.A.5) and (24.A.6): 

 ( )C g BV B
V VC C

E k TE E k T
c vn p N P e N P e−− −= =   (24.A.7) 

This expression is an example of the principle of mass action or detailed balance: the right-hand 
side of equation (24.A.7) is proportional to the rate that electron-hole pairs will be thermally 
generated, whereas the left-hand side, the product of the electron and hole densities, is 
proportional to the rate that conduction electrons and holes will wander across one another and 
recombine. These two rates must balance when the system is in thermal equilibrium and the 
conduction electron and hole densities have become stable. 
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When the semiconductor is pure, then the only source of charge carriers is thermal generation 
from the intrinsic semiconductor atoms. In this case c v in p n= ≡ , the intrinsic charge carrier 
density. From equation (24.A.7) we immediately see that this implies that 

3 2 exp[ (2 )]Bgin T E k T∝ − , as stated in (24.8). Comparing this result to either (24.A.5) or 
(24.A.6) shows that the chemical potential μ for a pure semiconductor must be near the center of 
the band gap, as stated earlier (its separation from the gap center is within a factor of order unity 
times Bk T ). Note that since 2

in  is given by the right-hand side of (24.A.7), but that the 
expression is correct even for impure (doped) semiconductors, then it must be the case that 

2
ic vn p n=  even when a semiconductor is dominated by extrinsic charge carriers, as stated in 

(24.10). 

Semi-classical charge carrier dynamics in a metal 

In this section we demonstrate that only electrons near the Fermi surface in the conduction band 
of a metal participate in DC electrical conduction. To simplify the math, we assume that the 
metal is homogeneous and isotropic,13 so that the energy function ( )kε



 for the single-electron 
states in the conduction band is spherically symmetric. Thus ε  depends only on the wave vector 
magnitude k (we measure the energy ε  from the bottom of the conduction band). We further 
assume that the number density n of the electrons in the conduction band is quite large, so that 
the Fermi energy .F Bk Tε 

14 The metal’s temperature T is also assumed to be uniform 
throughout. 

In the absence of an applied electric field, at any point in the metal the occupation probability of 
any particular single-electron state with wave vector k



 is given by the Fermi-Dirac distribution 
function ( ( )) :f kε   

 
( ( ) ) ( ( ) )

1 1( ( ))
1 1B F Bk k T k k T

f k
e eµε ε εε

− −
= ≈

+ +
  (24.A.8) 

where we’ve approximated the chemical potential μ with the Fermi energy Fε  (the difference 
F µε − 

2( ) ,F B F Fk Tε ε ε  so this approximation is quite good). The density of single-
electron states in position-wave vector ( , )r k



  phase space is (cf. General Appendix B) 31 4 ,π  
so the total number of electrons dN expected to occupy the phase space volume 3 3d r d k



  about a 
phase space point ( , )r k



  would be: 

                                                 
13 This is a real stretch, given that the crystalline structure of a typical metal gives rise to the various energy bands. 
However, this assumption will keep the math from getting messy: tensor functions of k



 become scalars. 
14 If this condition is not satisfied, e.g. the conduction band is nearly empty, then the conductor is more properly 
classified as a semi-metal. A typical example is the graphite form of carbon. 
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3 3

3( , ) ( ( ))
4

d r d kdN r k f k
π

ε=






   (24.A.9) 

Now assume that our relaxation time model for electron-ion collisions is reasonably accurate. In 
any infinitesimal time interval dt, the fraction of electrons near ( , )r k



  experiencing a collision 
(either just about to have one or just exiting from one) is ( ),dt kt  where ( ) ( )k v kt λ=  is the 
mean time between collisions for electrons with wave vector ,k



 λ is the mean free path, and 
( )v k  is the electron speed associated with k. The probability that such an electron has avoided or 

will avoid another collision over a time interval t∆  is ( ) exp[ ( )].P t t kt∆ = −∆  Note that 
( ) ( ) .dt k dP dt dt dPt = − = −  The violence of these events is such that the electrons emerging 

from collisions are distributed according to ( ( )),f kε  no matter what their distribution might 
have been just prior to those collisions—this is the essential assumption of our relaxation time 
model.  

The semi-classical model we assume requires that the electron’s dynamics (evolution of its 
position r  and wave vector )k



 following a collision is determined from the applied external 
electric field E



 in the following way: 

  ˆ; ( ) ( )d k d r dqE v k k k
dt dt d k

εε= = = ∇ =




 




     (24.A.10) 

For an electron, of course, .eq q= −  The electron must be considered to be a wave packet in 
phase space centered on ( , ),r k



  and expressions (24.A.10) then describe how this wave packet’s 
center evolves with time in phase space. For this description to be valid, the physical size of the 
wave packet must be small compared to the mean free path λ, but large compared to the inter-
atomic spacing. The electron’s effective mass, because we assume that ( )kε



 is spherically 
symmetric, is defined as: 

  
2

2 2

1 1
*

d
m d k

ε
=


  (24.A.11) 

If this number is negative, as it will often be if ε  is in the upper half of the energy band, then the 
charge carriers should be considered to be holes with charge eq+  and single-hole state energies 
defined by their distance from the band top (as for holes in a semiconductor valence band). With 
the definition (24.A.11) for the effective mass *m  the charge carrier’s acceleration is given by 
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* *

dv d k qEa
dt m dt m

= = =








   

This result is why we call this the semi-classical model for charge carrier motion. We assume 
that the electric field is weak, so that between collisions a typical electron will change its wave 
vector k



 by only a tiny fraction.15 

The equilibrium distribution (24.A.9) is homogeneous and isotropic throughout the metal. When 
a uniform DC electric field E



 is applied, we expect the charge carrier distribution to change, 
however, so that a uniform current density J Eσ=

 

 results. Thus, the k-space distribution 
function must change from ( ( ))f kε  to one that is no longer isotropic: ( ).kζ



 In terms of this 
non-equilibrium (but steady-state) distribution, the current density J



 is (cf. equation (24.2)): 

  
3

3( ) ( )
4D

band

d kJ nqv q v k kζ
π

= = ∫


 


    (24.A.12) 

Each of the charge carriers included in the integral (24.A.12) arrived at ( , )r k


  from its most 
recent collision along a path through phase space determined by the equations (24.A.10). Since 
the metal is assumed to be homogeneous, the position r  of this last collision is irrelevant; what 
matters was its original ( )k t



 at the time t of its last collision. If the time at which we evaluate the 
integral (24.A.12) is taken to be 0 ,t  then the equation of motion for ( )k t



 from (24.A.10) is: 

  0 0( ) ( ) ( )k t k t t t qE= − −
 



     

and the value of the Fermi-Dirac distribution function at ( )k t


 may be calculated by expanding in 
a Taylor series about its value at 0( ) :k t



 

  0( ) ( ( )) ( ) ( ) ff t f k t t qv k Eε ε
∂

≈ − − ⋅
∂




   (24.A.13) 

where the terms on the RHS of (24.A.13) are evaluated at 0( ),k t


 and we’ve used the expression 
(24.A.10) for ( ).v k



  Now the number of electrons which leave a collision near time t and which 
have the correct ( ( ), ( ) )r t k t



  to arrive at ( , )r k


  is given by 

  
3 3

3( ( ), ( ) ) ( )
4 ( ( ))

d r d k dtdN r t k t f t
k tπ t

=








   

                                                 
15 As was discussed early in the notes (page 24-3), the average charge carrier drift velocity in a good conductor 
resulting from the acceleration by the applied field can be expected to be very small compared to the average 
random speed of the charges.  
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Not all of these electrons will avoid another collision before reaching ( , ) :r k


  only the fraction 
0( )P t t−  will. Thus the number of electrons arriving at ( , )r k



  from the time t will be given by: 

  
0( )3 3 3 3

0 3 3( ) ( ) ( ) ( )
4 ( ( )) 4 ( ( ))

t td r d k dt d r d k edN t P t t f t f t dt
k t k t

t

π t π t

− −

= − =
 

 

   

Substituting from (24.A.13) and performing the time integration from t →−∞  to 0 ,t t=  we get 
the modified distribution function ( ) :kζ



  

  

3 3

3( , ) ( )
4

( ) ( ( )) ( )

d r d kdN r k k

fk f k qv k E

ξ
π

ζ tε ε

=

∂ = + ⋅ − ∂ 





 



 




  (24.A.14) 

From this result, we see that the distribution function in the presence of the field E


 is just the 
equilibrium function ( ( ))f kε  plus a correction to those states near the Fermi energy, the only 
region where f ε∂ ∂  differs significantly from 0. Since the equilibrium distribution of charge 
carrier velocities is, of course, isotropic, the ( ( ))f kε  term will leave a vanishing contribution to 
the integral (24.A.12) for the current density .J



 

Substituting the second term in ( )kζ


 into (24.A.12) gives: 

  ( )
3

2
3( ) ( ) ( )

4
band

f d kJ q k v k v k Et
πε

∂ = ⋅ − ∂ ∫


 
 

     

The above expression is straightforward to integrate over the range of angles between ( )v k


  and 
.E


 Clearly, by symmetry, the resulting J


 must be parallel to E


. Write the differential wave 
vector volume 3d k



 in spherical coordinates as 2 sin ,k d d dkθ θ φ  and then choose the ˆ-axisz  to 
be aligned with .E



 The integrals over the angles θ and ϕ then become: 

  
2 1 2

0 0 1 0

4ˆ ˆ ˆ ˆˆ ˆ ˆsin ( ) cos ( cos sin cos sin sin ) (cos )
3

k k z d d z x y d d z
π π π πθ φ θ θ θ θ φ θ φ φ θ

−

⋅ = + + =∫ ∫ ∫ ∫    

thus, since ˆ,J E E zσ σ= =
 

 we get the conductivity :σ      

  
2

2 2
3

1 4( ) ( )
3 4

band

f k d kq k v k πσ t
πε

∂ = − ∂ ∫    

Now, 24 k d kπ  is just the volume of a spherical shell with radius k, and 34π  is the k-space 
volume of a single-electron state, so the final factor in the integral for σ is just the differential 
number of single-electron states in the shell: ( )dn dn dk dk=  (n in this context is not the volume 
number density of electrons, but rather the volume number density of single-electron states). In 
terms of energy, ( ) ( )dn dn d d g dε ε ε ε= ≡ , where ( )g ε  is the energy density of single-
electron states defined in General Appendix B (cf. equation B.17). With this result we may 
express σ as an integral over energy rather than k: 
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  2 2 1( ) ( ) ( )
3

band

fq v g dσ t ε ε ε εε
∂ = − ∂ ∫   (24.A.15) 

 
Figure 10: The Fermi-Dirac distribution function ( )f ε  and the negative of its derivative 
plotted near the Fermi energy, .Fε  Beyond 6 Bk T  from Fε  the derivative differs 
insignificantly from 0; the integral of f ε∂ ∂−  over this interval is greater than 0.995.  

Next consider the derivative of ( ),f ε  which only varies significantly from zero in the small 
region of a few Bk T  about the Fermi energy ,Fε  as shown in Figure 10. 

Since f ε∂ ∂−  is so sharply peaked near ,Fε  we can approximate the integral (24.A.15) by 
using the value of the integrand at :Fε  2 2 1

3( ) ( ) ( ).F F Fq v gσ t ε ε ε≈  

Making the rough approximation that  21
2 * ( ) ,F Fm v ε ε  we get: 

  
2

2
3

( ) ( )
*

F
F F

q g
m
tσ ε ε ε   (24.A.16) 

Comparing this to the Drude result (24.4), we see that the charge carrier density n in that 
equation is replaced by (2 3) ( ) ,F Fg ε ε  and that, naturally, the effective mass *m  should be used. 
In the case of otherwise free and independent electrons, interestingly, (2 3) ( )F Fg nε ε =  (cf. 
General Appendix B equation B.17), and we recover the Drude result, with the proviso that the 
relaxation time is evaluated for electrons at the Fermi energy: ( ).Fvt λ ε=  Since ( )Fv ε  is 
independent of temperature T, the relaxation time τ and thus the conductivity σ should vary with 
temperature only as does the mean free path λ, and so should vary approximately linearly with T 
(see equation (24.6)). 
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APPENDIX B: DEGENERACY PRESSURE 

As we have seen, the fact that the conduction electrons in a metal are identical fermions subject 
to Pauli Exclusion has a profound influence on their kinematical behavior and therefore the 
temperature dependence of the resistivity of a good conductor such as copper. Pauli Exclusion 
and the Uncertainty Principle, however, combine to determine even the most basic property of a 
solid: the fact that a solid is generally hard and nearly incompressible, unlike a gas. In fact, it 
may be argued that our personal experience with the consequences these two subtle but 
fundamental quantum mechanical properties of identical particles of matter is as ingrained as our 
familiarity with gravitational acceleration on the Earth’s surface and much more familiar than 
dynamical laws of nature such as those of electromagnetism and its Lorentz force.  

Consider first the finite size of, say, a hydrogen atom. The tiny nucleus (in this case a single 
proton) attracts an electron mainly through the electrostatic Coulomb force between them. The 
resulting physical extent of the ground-state wave-function of the electron-nucleus pair is 
determined by the fact that as the electron is confined to an ever smaller volume V (which would 
reduce the average Coulomb potential energy of the electron-nucleus pair, which goes as 

1 1 3)r V− −∝ , the average electron momentum p, and thus its kinetic energy must rise—this is the 
basic content of the Uncertainty Principle. You can think of the mechanism by which this result 
comes about this way: the radius r to which an electron is confined in its ground state must be 
within a factor of order unity of the reciprocal wave number 1k −  of its ground-state wave-
function. But this wave number is related to the magnitude of its momentum by the basic laws of 
wave mechanics: .p k=   Thus we deduce the Uncertainty Principle relation .r p    In the case 
of the hydrogen atom, 0.5Å,r   the Bohr radius, and the electron’s average kinetic energy 

13.6eV,T ≈  which is also the binding energy of the electron-proton pair.   

This observation is readily generalized to the case in which any single-electron state is 
constrained to occupy a volume 3 32ÅV r   (the volume of the valence electron state of a 
typical atom, say). In this case the electron’s minimum momentum would need to be 

0.3(2 Å),p r     and thus it must have a minimum kinetic energy of 
2 2 2 22 ( ) (3Å ) 3eV.e ep m c m c=   T  Because of the electrons’ spins, two electrons may 

occupy this volume and still be in distinct quantum states, so the volume density of the valence 
electrons’ kinetic energies in a solid should be 33eV Å  (within a factor of 3  or so). 

If you compress a solid so that the electrons must each be confined to a smaller volume, then 
their momenta and kinetic energies must increase in accordance with the Uncertainty Principle 
outlined above: 3 3 2 3constant .r p V −= → ∝T  With this observation we can use one of the 
fundamental differential relations of thermodynamics to calculate the pressure exerted by the 
electrons as they “bounce around” with this amount of kinetic energy, shown in equation 
(24.B.1). 
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2 eV 100GPa
3 ÅS

P
V V
∂

= − =
∂

≈

T T
  (24.B.1) 

This internal pressure (on the order of 100 gigaPascals) could be called the degeneracy pressure 
of the electrons in the solid, and varies as 5 3.P V −∝  At the equilibrium volume of the solid this 
pressure is balanced by the attractive Coulomb force binding the electrons to their respective 
atoms or molecules.  

As the volume of an atom is decreased, the electrons’ kinetic energies increase as 2 3 2,V r− −∝  as 
stated above, but the Coulomb potential energy decreases only as 1 1 3,r V− −− ∝ −  so such a 
compression results in an overall increase in the total energy of the solid, requiring an input of 
work from the force doing the compressing. A solid’s bulk modulus K measures the external 
pressure required to compress its volume by some fractional amount. It is defined as: 

 PK V
V
∂

= −
∂

   

With our result (24.B.1) the theoretical bulk modulus of the degenerate outer electrons in a 
typical solid should be: 

 
2 2 2 5
3 3 3 3

K V P
V V V V
∂ ∂ = − = − = ∂ ∂ 

T T T
  (24.B.2) 

Thus the bulk modulus of a solid should be on the order of a couple of hundred gigaPascals. This 
turns out to be in the ball-park for high-strength materials such as steel (≈150GPa) and diamond 
(≈500GPa) but internal defects and voids in many solids (and liquids) reduce their actual bulk 
moduli by an order of magnitude or two. 

What you should learn from this exercise, however, is that when you push on a solid material 
such as a table, the reason it pushes back (resisting your attempt to compress its material) is 
because Pauli Exclusion among the identical electrons in it (and your fingertip) keeps them in 
separate quantum states, and the Uncertainty Principle determines what is meant by the phrase 
“separate quantum states.” Degeneracy pressure and a solid’s resulting resistance to compression 
is a direct consequence of this most fundamental kinematical behavior of an assemblage of 
identical elementary particles of matter (electrons in this case) — it is not a direct consequence 
of the electromagnetic or any other forces of nature between them (which determines their 
dynamical behavior, i.e. why the atoms bond to form a solid in the first place).16  

                                                 
16 “Forces” arising due to kinematical laws are probably more properly described as pseudoforces (such as 
centrifugal force or the acceleration due to gravity). Thus when you trip and fall down, the acceleration due to 
gravity (a pseudoforce) causes you to impact the ground, whose degeneracy pressure (another pseudoforce, in a 
sense) causes you to bruise your elbow. The resulting pain signal, however, is electromagnetic, so finally a “real” 
force of nature gets involved! 
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