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A BETA SPECTROMETER AND RELATIVITY 
 
By using a focusing magnet and energy-sensitive detector, the momenta and the corre-
sponding kinetic energies of fast electrons may be compared. You will use this momentum-
energy data to test one of the predictions of Special Relativity. Radioactive beta decay of 
137Cs nuclei provide the electrons, whose kinetic energies range up to approximately 1 MeV; 
at these energies the difference between the predictions of the Newtonian and relativistic 
theories of motion should be quite clear. The experiment will also provide you with a better 
understanding of the radioactive beta decay process as well as provide a bit of experience 
with solid-state particle detector technology and its associated electronics. 

A TEST OF RELATIVITY 
To get the most from the following discussions of the relativistic electrons’ momentum-
energy relations, you might want to review the material in General Appendix A: Relativistic 
Kinematics – particularly those sections up through Kinetic energy and equation (A-9) on 
page A-4. 

Momentum-energy relation for fast electrons: Newton v. Einstein 

Newtonian mechanics specifies a simple relationship between a particle’s linear momentum 
p  and its kinetic energy T due to that motion: 2 2p mT= . The relation between the 

momentum and the kinetic energy of a particle according to relativity theory, on the other 
hand, is given by:  

 2
22 1

2
Tp mT
mc

 = + 
 

  (21-1) 

The derivation of equation (21-1) is left to the Prelab Problems. The extra term 22T mc  in 
this expression implies that the momentum of a particle grows more rapidly with kinetic 
energy than the Newtonian theory would predict, especially as the particle’s kinetic energy 

 
Figure 1: Special relativity predicts that the growth in momentum p with increasing kinetic 
energy T is more rapid than the Newtonian prediction (dashed line). At T = 2mc2 (vertical 
reference line), the relativistic p2 is twice the Newtonian value. 
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becomes comparable to its rest energy, 2mc  (see Figure 1). 

Using a magnet to determine momentum 

A charged particle in a magnetic field will experience a Lorentz force1 due to the field given 
by (SI units): 

 d
dt p F qv B= = ×

 

    (21-2) 

This expression is correct for both Newtonian and relativistic descriptions. Since the 
magnetic force is orthogonal to the direction of motion of the particle, it does no work on the 
particle and cannot change the particle’s kinetic energy. Thus a charged particle’s speed in a 
magnetic field remains constant; only the particle’s direction of motion can change. A 
particle whose velocity is orthogonal to a uniform, constant magnetic field will thus follow a 
circular path of radius r in a plane normal to the field with centripetal acceleration 2v v r= . 
Relating this acceleration v  to the force F  given by (21-2), you can derive the following SI 
expression for the radius r of the particle’s circular motion, known as the Larmor radius2:  

 pr
qB

=   (21-3) 

Thus if you know the radius of curvature of 
a charged particle’s motion through a 
uniform magnetic field, then you can 
determine its momentum using (21-3). This 
may be accomplished using a magnet with 
the configuration shown schematically in 
Figure 2. Arranging the source and detector 
as shown with respect to the cylindrical area 
containing the magnetic field B ensures that 
only particles with a Larmor radius equal to 

effR  will arrive at the detector. How such an 
arrangement also serves to focus the beam 
of charges is described below (starting on 
page 7); a more thorough description, 
including more realistic magnetic field 
modeling, is available in the notes to Physics 
6 Experiment 9: A Mass Spectrometer. 

                                                 
1 The Dutch physicist Hendrik Lorentz published his derivation of the complete electromagnetic force law 

( )q= + ×F E v B  in 1895, although a statement of the magnetic contribution to the force was first published by 
Oliver Heaviside in 1889. 
2 Named for British physicist James Larmor, an important figure in the electrodynamics of moving charges and 
the early development of what became the theory of relativity. 

 

Figure 2: Schematic arrangement of the 
electron path through the magnetic field. The 
direction of B is normal to the plane of the 
figure. The particles enter and exit the field 
along radius vectors separated by 90°. 

effR

effR

B
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By controlling the magnetic field strength B, the experimenter determines the momentum p 
of those electrons which can reach the detector using equation (21-3) with effr R= . The 
detector in Figure 2 must be able to determine the arriving electrons’ kinetic energy T; this 
combined momentum-energy data then provides the means to compare the relativistic 
expression (21-1) to the simpler Newtonian theory.  

BETA DECAY AS A SOURCE OF FAST ELECTRONS 

137Cs radioactive beta decay 

The electron source used for this experiment is a radioactive 137Cs sample3, which is 
convenient both because it has a relatively long half-life (30 years), and because it emits 
fairly high-energy electrons (kinetic energies on the order of an MeV). You investigated the 
high-energy photon emission from 137Cs when you performed Experiment 30, but the 
radioactive material used in those samples is sealed in a thick plastic matrix so that the 
electrons emitted from the decaying atoms cannot escape. In this experiment the samples are 
not sealed so that the electrons do escape and can enter the apparatus. Let us review the 
137Cs→137Ba decay scheme, Figure 3. 

 
Figure 3: Decay scheme for 137Cs. The electrons from beta decay (β−) and internal 
conversion transitions will be used for this experiment. Level energies are relative to the 
137Ba ground state; β− electron maximum kinetic energies (Q values) are also listed. 

Beta decay of 137Cs usually leaves the daughter nucleus (137Ba) in an excited state which 
subsequently decays to its ground state either through γ-ray emission or through internal 
conversion (ejecting an atomic electron in the process). 

                                                 
3 137Cs is produced by fission of 235U in nuclear reactors; it has been a most problematic contaminant following 
the nuclear power plant disasters at Chernobyl and Fukushima. 
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Internal conversion 

A typical excited daughter nucleus following radioactive decay loses its excess energy via 
photoelectric emission – emission of one or more γ-photons as the nuclear state cascades 
downward to its ground state. In the case of 137Ba, however, a significant fraction of the time 
(15%) the excited nucleus reaches its ground state through the more exotic process of 
internal conversion. 

A transition between two states may be difficult for a system to accomplish through photon 
emission for a variety of reasons: for example, the charge configurations of the two states 
may be such that the external electromagnetic field doesn’t change much as a result of the 
transition (a 2s-1s electron transition in atomic hydrogen, for example); or, for another 
example, the angular momentum difference between the two states may be so large that it is 
difficult for a single photon to carry away the excess – this happens to be the case for the 
0.6616 MeV nuclear state in 137Ba, where the difference in the angular momentum quantum 
numbers of the two states is 4J∆ = . Such transitions are generally referred to as forbidden 
transitions, and the lifetime of the excited state in such a situation can be very long – the 
phenomenon of phosphorescence being a common atomic or molecular example. 

A nucleus can sometimes rid itself of this excess energy and reach its ground state by 
transferring the energy to an atomic electron using the Coulomb force between it and that 
electron; the electron can then efficiently carry away both the excess energy and the angular 
momentum the nucleus needs to lose. Because the relatively light electrons experience such a 
strong Coulomb force when they enter the nucleus (56 protons in a barium nucleus, all 
packed within a couple of femtometers 15[10 m]−  radius), their consequent accelerations can 
be quite large. This is the essence of the internal conversion process, and an atomic electron 
ejected from the atom following this energy transfer is called a conversion electron. Picture 
this process as a quantum analog of how NASA gets probes to the outer solar system by 
whipping them around inner planets to pick up kinetic energy from the planets’ orbital 
motions. 

For an electron to participate in the internal conversion energy transfer it must approach very 
close to the nuclear protons – only those electrons whose atomic wave-functions have 
significant amplitude at the nucleus need apply. This restriction limits the choice to the 
electrons in 1s or 2s orbitals, with the 1s electrons having significantly higher probability (the 
higher-energy s-orbital electrons might also participate, but with very small probability). The 
electrons occupying 1s orbitals are known in the atomic spectroscopy parlance as K 
electrons; those in 2s as LI (or, simply: L) electrons.  

Following the receipt of the nuclear energy transfer (0.6616 MeV in our case), the electron 
must climb out of the Coulomb potential well of the nucleus, losing an amount of kinetic 
energy equal to its atomic binding energy. Since the K (1s) electrons are much more strongly 
bound than the L electrons (more than a factor of 6 in the case of barium), a K conversion 
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electron will have lower kinetic energy following its escape from the atom than will an L 
electron.  

Although some escaping conversion electrons may also lose a random amount of 
additional kinetic energy by colliding with other atomic electrons (causing additional 
ionizations), for the most part the conversion electrons from a given shell (K or L) are 
monochromatic or monoenergetic: they have well-defined kinetic energies equal to 
the nuclear energy loss minus the electron binding energy. 

Beta decay and the neutrino 

The radioactive decay of 137Cs happens when one of the nuclear neutrons changes to a proton 
and an electron is created (out of thin air!) which balances the new proton’s electric charge. 
This brand new electron then escapes the nucleus as a so-called beta particle.4 Although the 
energy lost by a nucleus during β-decay is well-defined (being the difference in the parent 
and daughter nuclear masses), the escaping β electrons were observed to have a continuous 
spectrum of possible kinetic energies up to this well-defined nuclear mass difference (minus 
the electron’s rest mass), as shown in Figure 4. 

 
Figure 4: Typical spectrum of β electron kinetic energies. The relative probability of 
observing a decay event with a specified β electron kinetic energy is plotted v. that energy 
(Q is the maximum observed kinetic energy).  

This apparent failure of energy conservation in the case of β-decay seemed to be accom-
panied by an equally-troubling violation of conservation of angular momentum: since the 
total number of nucleons (protons and neutrons) is not changed during the decay, the new 
electron’s intrinsic spin of ½ could not be balanced by a compensating change in the decay 
products’ other sources of angular momentum (whose total can only change by an integer 
number).  

                                                 
4 Alpha and Beta radiation were named by the British physicist Ernest Rutherford in 1899. The French physicist 
Henri Becquerel confirmed that the beta particle’s charge/mass ratio is the same as that of the electron in 1900. 
Rutherford was awarded the 1908 Nobel Prize in Chemistry for his pioneering discoveries about radioactive 
decay; Becquerel, the discoverer of radioactivity, shared the 1903 Nobel Prize in Physics with Marie and Pierre 
Curie. 
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A solution to this dilemma was proposed by the then-Austrian physicist Wolfgang Pauli (of 
Pauli Exclusion fame) in 1930: an unobserved, electrically neutral particle is also created 
along with an electron during β-decay. This spin-½ particle would share the decay’s energy 
with the electron so that the sum would equal that lost by the nucleus; because of the various 
possible escape directions of the two particles, linear momentum conservation would divide 
the available energy in various ways among the two particles, accounting for the observed 
electron kinetic energy spectra (Figure 5). After discovery of the neutron in 19325, Pauli’s 
hypothesized particle was rechristened the neutrino by Enrico Fermi6. The neutrino7 was 
finally detected experimentally in 1956 by the Americans Clyde Cowan and Frederick 
Reines8. 

  
Figure 5: The geometry of the β-decay determines how the available kinetic energy Q is 
shared between the electron (e−) and neutrino (ν ) (actually an antineutrino); the arrows 
in the diagrams show the distribution of linear momentum among the particles (M is the 
nucleus). Left: in this example decay most of the available kinetic energy has gone to the 
neutrino; right: most has gone to the electron. Since the neutrino has almost no mass, its 
speed will nearly always be very close to the speed of light, even when it gets only a 
relatively small amount of the available energy. 

This continuum of possible β electron energies (Figure 4) makes the 137Cs decay a 
useful source of a multitude of electron energies and momenta to test the 
relativistic expression in equation (21-1). 

                                                 
5 The neutron was discovered by the English physicist James Chadwick in 1932, while with Rutherford at 
Cavendish Laboratory in Cambridge. His discovery earned him the 1935 Nobel Prize in Physics. 
6 The Italian physicist Enrico Fermi developed a comprehensive and truly pioneering theory of beta decay in 
1934. His subsequent development of the first nuclear reactor and his discoveries therewith earned him the 1938 
Nobel Prize in Physics. 
7 The neutrino was thought for many years to be a massless particle, but current experimental evidence indicates 
that it has a nonzero, albeit tiny, rest energy. Studies of the β-decay of tritium and of the so-called neutrino 
oscillations, as well as recent cosmic microwave background studies currently place the neutrino’s rest energy 
at somewhat less than ½ eV, more than a million times smaller than that of the electron. 
8 Cowen and Reines began their experiments in 1951, searching for neutrinos emitted by a nuclear reactor. 
Reines was awarded the Nobel Prize in Physics for their discovery in 1995 (Cowan had died in 1974). 

−
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EXPERIMENTAL APPARATUS 
A typical arrangement of the β spectrometer apparatus is shown in Figure 6 with its major 
system components labeled. Selected systems will be discussed in more detail in the 
following sections. 

 
Figure 6: The β spectrometer apparatus with its typical electronic equipment arrange-
ment. The experimenter uses the computer to control MCA energy spectrum acquisition, 
while the magnetic field is set using the magnet power supply and Hall probe field 
strength measurement. 

Magnetic focusing of the electrons 

The magnetic field not only selects the momentum of the electrons to be detected, as 
described previously (see page 21-2 of the notes), it also provides focusing of the electrons 
(for the selected momentum) between the 137Cs source exit slit and the detector entrance slit 
as we shall now describe. For this discussion we use a simplified model of the magnetic field 
which is uniform within a radius effR  of the pole axis and 0 elsewhere, as shown in the 
figures. Consider Figure 7; we know that upon entering a region with a constant, uniform 
magnetic field, each electron will follow a circular path with constant speed and the constant 
radius given by (21-3). In order to make the 90° turn shown in the figures, this radius must 
match effR . This condition will clearly route electrons which enter the magnetic field exactly 
along a radius vector of the field region to an exit along another radius vector displaced by 
90° (this central path from source to detector was shown in Figure 2 and is again displayed in 
Figure 7).  
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Figure 7: A diagram of the path electrons take from the 137Cs source (upper right) to the Si 
diode detector (upper left). The electrons are turned through 90° and focused by the 
magnetic field B, which is perpendicular to the plane of the figure. With the geometry 
shown, focusing is accomplished only for those electrons whose Larmor radius is equal to 
the effective radius of the magnetic field, Reff . 

What we wish to demonstrate is that, with proper positioning of the source and detector, 
electrons whose paths from the source differ slightly from this ideal will still be directed to 
the detector: the magnet also serves to focus the electrons onto the detector slit. To proceed 
with this analysis set up an x-y coordinate system for the plane of the electrons’ path with its 
origin at the pole axis, the x-axis aligned with the electron source slit, and the y-axis aligned 
with the detector entrance slit, as shown in Figure 8 (on page 21-9). 

Selected electrons approaching the magnet exactly along the x-axis in Figure 8 follow a 
circular arc in the field with a center of curvature at ( , ) ( , )eff effx y R R= . Now consider ions 
which are not approaching from exactly along the x-axis. One such electron may enter the 
field and follow a circular arc with its center very slightly displaced, i.e.: its center of 
curvature is at ( , ) ( , )eff effx y R u R v= + + , where u and v are both effR . This situation (for 
positive u and v) is depicted in the figure. We ask the following questions: could such an 
electron have originated from a point on the x-axis, and if so, how far is this point from the 
magnet, and similarly could its destination upon leaving the field be somewhere on the y-
axis?  

A review of Figure 8 while keeping in mind that u and v are small should convince you that 
angles θ and ϕ are also small, so we can approximate effv Rθ ≈  and effu Rf ≈ . Thus we 
have the similar triangles shown, and clearly the offset electron path intersects the x and y 
axes with angles ϕ and θ, respectively. The distances from the edge of the magnetic field to 
the intersection points we call U and V, as also shown in the figure. 

effR

effR

B

effR
effR
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Thus, in the limit of small θ and ϕ, effu V v R=  and effv U u R= . Eliminating u and v from 
these equations, we find that 

 2
effUV R=   (21- 4) 

Equation (21- 4) is independent of u and v (as long as they are small), so if the source is 
positioned at a distance U from the magnet, electrons emitted through a small range of angles 
will be focused at a point a distance V from the magnet, as shown in the figure! This formula  
may be cast into a form equivalent to that for a thin optical lens of focal length effR  by using 
the distances from the origin to the two focal points, effU U R′ = +  and effV V R′ = + . With 
these definitions, (21- 4)becomes: 

 
1 1 1

effU V R
+ =
′ ′

  

This ability to focus an electron beam also applies to more realistic magnetic field models; 
the interested reader should consult the notes for Physics 6 Experiment 9 for details. 

The Hall Probe and its calibration 

A Hall probe 9 is used to accurately measure the strength B of 
the magnetic field experienced by the electrons as they traverse 
the narrow gap between the electromagnet’s two pole-pieces. 
Following probe calibration, you will position it in this gap on 
the pole-piece axis. The Hall probe sensor is a small, thin, 
rectangular semiconductor wafer. As illustrated in the diagram 
at right, current HI  from a power supply flows across the wafer 
from one edge to the opposite, and the voltage HV  across the other two edges is measured by 

                                                 
9 The American Edwin Hall discovered the effect now named for him in 1879. 

  

Figure 8: The geometry used to evaluate the focusing performance of the magnet. 
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a sensitive voltmeter. Ideally, the measured HV  is proportional to the product of the 
component of the magnetic field normal to the surface of the wafer, B⊥ , and the current HI , 
because the Lorentz force causes the charge carriers in the wafer to be deflected by B⊥  
toward one edge as they travel through it. This build-up of mobile charge carrier density 
along one edge in the (overall neutral) piece of material creates an electric field orthogonal to 
the direction of current flow, which is sensed by HV . 

You calibrate the hall probe in three steps: 

(1) Hold the probe far from any magnets and with its surface oriented parallel to the 
Earth’s field. In this case we should have 0HV = , but imperfections in the uniformity 
of the material of the probe will produce a residual voltage offset (which would result 
in a systematic error in your Hall probe measurements). Use the offset null function of 
the voltmeter attached to the probe to zero out this residual voltage reading, and thus 
mitigate this source of error. 

(2) Insert the probe into the calibration magnet (a small, permanent magnet) and adjust 
the Hall probe current HI  using the potentiometer on its power supply until the 
measured HV  corresponds to the value of the calibration magnet field B  (for 
example, you would adjust HI  so that a calibration magnet field of 807 Gauss might 
correspond to a voltage reading of 8.07 mV, for a conversion factor of 100 G/mV). 

(3) Store the calibration magnet far (half a meter or so) from the electromagnet used for 
the experiment so that you don’t inadvertently change its magnetization! 

Make sure you record the calibration magnet’s field value and its uncertainty (another 
systematic error source) along with the voltage you measured. 

Silicon diode particle detector 

To test the theory represented by equation (21-1), we also must determine the kinetic 
energies of the charged particles we send through the magnetic field shown in Figure 2. To 
accomplish this measurement, the apparatus uses a silicon diode detector. The physics of the 
semiconductor PN junction diode is discussed briefly in Physics 6 Experiment 13: The Solid 
State Diode; you may want to review that experiment’s Appendix: Elementary physics of the 
PN junction diode.  

The basic operation of a solid-state diode detector is as follows: 

1. The diode is reverse-biased with a bias voltage of a few hundred volts, so in its idle state 
it conducts only a very small leakage current.  

2. The large depletion region of the diode in this state is nearly empty of charge carriers: 
thermally-generated electron-hole pairs make up the only source of charge carriers, and 
these pairs are the source of the diode’s small leakage current. 



 21-11 4/29/2015 

3. Any high-energy electron entering the diode’s depletion region will collide with the 
silicon atoms’ valence electrons, starting a cascade of ionizations which will quickly 
convert its initially large kinetic energy into the ionization of thousands of electrons 
removed from their parent silicon atoms. 

4. These secondary electrons and the holes they left behind are swept from the diode’s 
depletion region by its reverse bias voltage, resulting in a short pulse of current through 
the diode’s external circuitry with a charge equal to that of the total charge of the freed 
electrons; this current pulse signal is integrated and amplified by the system electronics. 

Of course, a high-energy photon entering the diode’s depletion region can Compton scatter or 
be photoelectrically absorbed, releasing a high-energy electron which would subsequently 
generate a current pulse in the diode circuitry as described above. 

The silicon diode detector has a major advantage over a scintillation detector for this 
experiment: the total charge of the ionized electrons released following a high-energy 
interaction is directly measured by the diode circuitry; thus the inefficiency of the 
scintillation-to-photomultiplier step is eliminated. There are typically hundreds of times as 
many electrons generated in the silicon detector (which determine the Poisson counting 
statistics), greatly enhancing its energy resolution over that of a sodium iodide crystal 
scintillator. The average energy required per electron-hole pair creation by a high-energy 
event in the silicon diode detector is approximately 3.8eV, compared to the several hundred 
eV required per photoelectron in a good NaI scintillation detector. 

A slightly less important advantage of the silicon detector derives from its small size and the 
relatively low atomic number of silicon: its sensitivity to high-energy photons is not as great 
as for a NaI detector, reducing the γ-photon detection background and improving the signal-
to-background ratio for electron detections. Luckily, the γ-photon sensitivity is high enough 
for us to use γ-ray sources for detector system energy calibration. 

The silicon diode detector has one disadvantage, however. Since silicon’s band-gap energy is 
a relatively small 1.1eV, random thermal generation of electron-hole pairs in the diode 
depletion region is a significant noise source; the large reverse bias voltage on the diode can 
even accelerate thermally-created charge carriers to sufficient energies to occasionally 
generate secondary ionizations as well. This background of random, although small, 
thermally-generated current fluctuations greatly reduces the detector’s sensitivity to particles 
with energies of less than several tens of keV and also limits the detector’s energy resolution 
by adding a random amount of thermally-generated ionizations to those caused by a high-
energy particle detection. Cooling the detector could greatly improve the noise situation, but 
you will use it at room temperature in this experiment. In fact, cooled silicon detectors are 
often used to detect x-ray photons in the energy range of a few to about 100 keV. 
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Pulse-processing electronics 

 
Figure 9: System-level diagram of the detector and pulse-processing electronics. 

The pulse-processing electronics system (Figure 9) is functionally quite similar to that used 
with the NaI scintillators in Experiment 30a: current-integrating preamplifier → pulse-
shaping, variable-gain amplifier → analog-digital converter (ADC) → MCA histogram 
display. In this experiment setup, however, each subcomponent in this sequence, as well as 
the diode’s high-voltage power supply, is implemented by a separate electronics module. 
These individual modules provide for customization of a setup to suit the particular needs of 
an experiment such as this one. Many of the electronics components are designed to the NIM 
(nuclear instrumentation module) standard originally created in 1968, although it is still 
supported by several manufacturers even today. Because of this flexibility in the choice of 
components, the particular modules used to implement each function in the signal processing 
chain may be changed from time to time. 

The current pulses from the silicon diode detector are integrated, converted to a voltage, and 
amplified by a current-integrating preamp. The preamp is mounted close to the detector (see 
Figure 6) because the diode’s output signal is quite small (only about 3 femtocoulombs for a 
K conversion electron detection). The preamp output is shaped into a pulse and further 
amplified by an amplifier. You may adjust the fine gain of this amplifier to control the 
horizontal position of features on the MCA display as you did in Experiment 30a. 

The high-voltage power supply (HV Supply in the figure) sets the reverse-bias voltage of the 
silicon diode detector. Setting the voltage too high will cause irreversible damage to the 
diode; the laboratory administrator will have preset the voltage to the proper value to 
optimize the sensitivity of the detector. 

to O-Scope

Si Diode
Detector

HV 
Supply

Pulser

To Computer 
MCA application

Preamp

HV

Test

Out

ADC/MCA

Digital 
Output

In

SCA

Digital 
Output

In

Amplifier/
Shaping 
Filter

Out

Out

In

Scaler
(counter)

In



 21-13 4/29/2015 

The Pulser shown in Figure 9 may be used to insert synthetic “event detections” into the 
electronics system for testing or to help the experimenter set gains and thresholds. When 
activated, it outputs a continuous series of identical pulses whose height may be set by a 
control on the device. You would normally set this pulse height so that the Pulser output 
mimics detections of some particular event (such as a K conversion electron); an oscilloscope 
attached to the amplifier output is particularly helpful to monitor the pulse voltage level.  

The SCA (single channel analyzer) has two adjustable voltage thresholds: a lower and an 
upper level. If an input signal’s pulse height falls within the bounds set by these limits, then 
the SCA outputs a short digital pulse. Its output is connected to a Scaler, a device which 
counts the digital pulses presented to its input and displays a running total of the pulses 
counted. The experimenter may adjust the time interval over which the Scaler will 
accumulate counts. 

PROCEDURE 

Always disable the high voltage bias and disconnect the detector from the preamp 
whenever you change the configuration of the experiment (insert or remove 137Cs 
calibration source, start or stop the vacuum pump, etc.). 

Do not connect or disconnect the detector from the preamp unless the high 
voltage output is disabled! 

Do not insert or remove the detector from the magnet apparatus while it is 
connected to the preamp! 

Any change to the power supply output takes about 30 seconds to take effect because of the 
low-pass filtering internal to the signal preamplifier. Depending on the power supply in use, 
the high voltage output is disabled by selecting STANDBY or OUTPUT OFF or something 
similar – just ask your TA for assistance if needed. Do not turn off the power supply power 
switch except as a last resort.  

The in-lab procedure is composed of the following steps: 

1. Use the 137Cs and 133Ba calibration sources to familiarize yourself with the electronics 
and the MCA software and to acquire energy calibration spectra. 

2. Pump the electron path chamber down to vacuum and calibrate the Hall probe. 

3. Use the SCA and Scaler to accurately determine the magnetic field required to detect the 
K conversion electrons from the 137Cs source. 

4. Acquire β electron energy data for several different magnetic field settings for later 
analysis. 
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Energy calibration 

Insert the 137Cs calibration source into the apparatus using the special tool provided. After 
reconnecting the preamp to the detector, make sure that its back end is supported by the 
aluminum plate attached to the magnet; don’t allow the detector connector to become the sole 
support of the weight of the preamp. 

The HV Supply should already be adjusted to the correct high-voltage bias value (somewhere 
in the 250–400 V range); check with your TA or the lab administrator to confirm this. Apply 
the bias voltage to the detector and begin taking MCA energy spectra of the 137Cs calibration 
source. Identify the K conversion electron line in the spectrum (refer to Figure 10 and your 
answer to Prelab Problem 1) and adjust the amplifier’s Fine Gain to place the K line near 
MCA channel 400.  

Now take a calibration spectrum for several minutes – make sure the K and L electron lines 
and the γ-photon Compton edge are well-defined in the spectrum before saving it. In your 
notebook, record the MCA channel numbers of the K and L lines and the Compton edge (use 
the MCA software’s cursor to determine these channel numbers). 

Examine the O-scope display of the amplifier output pulses and record the pulse height (in 
volts) of the pulses corresponding to K line detections. Use the K line MCA channel number 
to estimate a rough keV/channel energy calibration. Record this estimate along with the HV 
bias voltage and amplifier Fine Gain settings. 

Remove the 137Cs calibration source (don’t forget to properly manage the HV bias supply to 
the detector!) and return it to its storage lead brick. After reassembling the detector-preamp 
components, get several 133Ba gamma rod sources (the same ones you used for Experiment 
30a) and place them around the vacuum chamber near the detector. Use the tray on top of the 
magnet pole piece gap to support them. 

Take a long (about 20 minutes or longer) 133Ba calibration spectrum. Make sure that you can 
identify a weak full-energy peak from the 356 keV γ-photon before stopping the calibration 
spectrum acquisition. In your notebook, record the MCA channel numbers of prominent 
calibration features you see. 

Pump down the vacuum chamber 

The HV bias must be removed from the detector as the vacuum system is 
pumped down or returned to atmospheric pressure! 

Applying voltage to the detector as the pressure changes can result in sparking and arcing 
and can cause permanent damage to the detector. 

The pressure must be less than 40 microns Hg before the HV bias may be safely applied! 
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Make sure all screws holding the detector flange in place are snug. Disable the HV Supply 
bias voltage output and then disconnect the preamp from the detector. Double-check that the 
137Cs calibration source has been removed from the vacuum chamber. Apply power to the 
vacuum pump. Monitor the vacuum gauge to ensure that the pressure in the chamber is 
falling.  

Calibrate the Hall probe by following the procedure on page 21-10. Insert the Hall probe in 
the access slot on top of the magnet pole pieces; you must reposition the tray used to support 
the 133Ba gamma rod sources to access the Hall probe slot. Make sure the calibration magnet 
is stored far from the apparatus electromagnet. 

If the pressure seems to have stopped decreasing at some value >30 microns, ask your TA 
and the lab administrator for assistance – the vacuum pump may need to be vented 
momentarily to improve its pumping efficiency. 

Once the chamber pressure is definitely remaining below 30 microns, reconnect the preamp 
to the detector and apply the HV bias voltage. 

K line magnetic field measurements 

Budget your lab time wisely as you collect this set of K line data; make sure you will have at 
least 20 minutes to perform the final procedure step to collect several different β electron 
data points. 

Use your results from Prelab Problem 4 to find the magnetic field setting which causes K 
conversion electrons to reach the detector. When you get close to the proper magnetic field 
setting you should see a peak build in an MCA spectrum at the same channel number which 
corresponded to the K line feature in your 137Cs calibration spectrum. determine the pulse 
height voltage for these K conversion electrons using the oscilloscope, and then set the upper 
and lower limit voltages on the SCA to a small range around this voltage (a few 10ths of a 
volt range around the pulse height voltage). 

Set up and activate the Scaler to acquire counts of K line events for about 10 seconds. Given 
the total counts displayed, what should be the approximate uncertainty in this count number? 
Repeat the measurement using the Scaler a couple of times and compare the observed 
fluctuation in the count values to your uncertainty estimate. 

Slightly adjust the magnetic field (only about a 1 Gauss change) and repeat the Scaler 
measurement. Recording the magnetic field v. Scaler count data, make further adjustments 
until you find the magnetic field value which approximately maximizes the Scaler count 
value. Take another couple of magnetic field v. count combinations so that you have enough 
data to fit to determine the magnetic field which would maximize the K line detection rate. 
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Acquire β electron magnetic field v. energy data 

Now set various values of the magnetic field so that you acquire several MCA spectra 
covering the β electron energy range (those β electrons with 514keVQ = , see Figure 4). In 
your notebook, record the magnetic field value along with the MCA channel number of the 
center of the electron peak (use the MCA software’s cursor to determine the channel 
number). Note from Figure 4 that few electrons are emitted with kinetic energies near the 
maximum energy Q, so acquiring good data for these electrons can take quite a long time. If 
you have time, also get data for the L conversion electrons. 

Secure the apparatus 

The HV bias must be removed from the detector before turning off the 
vacuum pump! 

Double check that you have the data you need! Try reloading several of your saved MCA 
spectra to check that they were saved properly. 

Disable the HV bias to the detector. Disconnect the preamp from the detector. Disconnect 
power from the vacuum pump (it will take many minutes for the vacuum chamber to return 
to near atmospheric pressure). 

Reduce the electromagnet current to zero and place the Hall probe in the calibration magnet. 
Record the Hall probe voltage and compare it to what you had recorded during your probe 
calibration. What will you do if the voltage is now several percent different from what it was 
during the original calibration? 

Check with your TA to make sure that the equipment is properly secured before leaving the 
lab. 
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PRELAB PROBLEMS 

1. MCA energy spectra of 137Cs and 133Ba obtained using the experiment apparatus are shown in 
Figure 10 below. The gain settings were the same for both spectra, so a given channel number 
corresponds to the same energy in each (note, however, that the range of channels plotted is 
different for the two spectra). These spectra are similar to those you will collect in order to 
calibrate the system’s MCA channel number v. energy. The information in this experiment’s 
Appendix A: Useful Numerical Data should prove helpful as you answer the following: 

a. Identify the features corresponding to K (1s) and L (2s) conversion electron detections in 
the 137Cs spectrum. Approximately what channel number corresponds to the K conversion 
electron energy? What then is the approximate keV channel  calibration of the x-axis? 

b. Identify the feature in the 137Cs spectrum which corresponds to the 0.6616 γ-photon. Given 
the atomic number of silicon, do you expect to see a strong full-energy peak for this 
photon? Which area of the spectrum should contain the β electrons whose 0.514MeVQ = ? 

(PROBLEMS ARE CONTINUED ON THE NEXT PAGE) 

 

 
Figure 10: Counts v. energy histograms for 137Cs (top) and 133Ba (bottom). The cesium spectrum 
includes detections of electrons (β and conversion) as well as γ- photons from the source; the 
barium spectrum shows only γ-photons. The x-axis is MCA channel number; the vertical axis is 
the event count for each channel (log count for the barium spectrum). 
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c. The 133Ba spectrum in Figure 10 shows at least 3 γ-photon full-energy peaks, though most 
are quite weak. Using your rough channel energy calibration result from part (b) and the 
133Ba decay scheme (Fig. A-1 on page 21-A-1), identify at least 3 full-energy peaks and a 
Compton edge you could then use for a more accurate energy calibration (make sure you 
state the γ-photon energy associated with each feature you identify). 

2. Derive equation (21-1) on page 1. Start with the expressions from General Appendix A: 
Relativistic Kinematics (using energy units, where 1)c ≡ : 

  2 2 2 andm E p T E m= − = −   

Make sure to express your final result using physical units, with the speed of light c 
explicitly shown as in (21-1). 

3. The relativistic momentum of a particle is given by p mvγ=   where 2 2 1/2(1 )v cγ −= −  is the 
particle’s boost (General Appendix A, equation A-6). Show that for the case of a magnetic 
field acting on a charged particle, the Lorentz force (21-2) will result in dp dt m dv dtγ=  for 
the time rate of change of p, even though the boost γ  is a function of v . Use this result to 
derive expression (21-3) for the Larmor radius (also called the cyclotron radius). 

4. Show that the functional relationship between an electron’s kinetic energy T and  the magnetic 
field strength B required to detect it using the apparatus in Figure 2 is such that 2B  can be 
expressed as a polynomial in the electron kinetic energy T: 1st order for Newtonian mechanics, 
2nd order for relativistic mechanics. 

Answer (SI units): 
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2 2

2 2
2 2 2 2 2
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2 1relativistic:

e

eff e

e

eff e eff e
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R q

mB T T
R q R q c
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=   
 
   

= +      
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  (21-5) 

where eq =  the magnitude of the electron charge, em =  electron mass, effR =  effective radius 
of the magnetic field. 

5. Assume that the magnet used for this experiment has an effective field radius of 6.9cm.effR =  
With the electron 2 0.511MeVem c = , at what value for B (in Gauss = 10-4 Tesla) would you 
expect to detect the 137Cs K (1s) conversion electron: (a) using Newtonian mechanics; (b) 
using relativistic mechanics? See this experiment’s Appendix A: Useful Numerical Data for 
the value of the K line electron kinetic energy (answers: 386G, 490G). 
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ANALYSIS 
The purpose of your analysis is to evaluate the validity of the relativistic expression (21-1), 
repeated below, relating the kinetic energy T and momentum p of, in this case, the electron. 
In particular, you should provide a quantitative evaluation of whether the relativistic 
expression provides a more accurate model of the relationship between T and p than does the 
more familiar Newtonian model, 2 2p mT= . 

 2
22 1

2
Tp mT
mc

 = + 
 

  (21-1) 

Your answer to Prelab problem 4, deriving equations (21-5), translates the relativistic and 
Newtonian expressions into your actual data: magnetic field B vs. kinetic energy T. We 
repeat these expressions here: 
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  (21-5) 

These SI expressions are a little bit inconvenient to use as written, because T is better 
expressed in, say, MeV, and the electron mass is more conveniently thought of in terms of its 
rest energy 2

em c , also in MeV. Your Hall probe calibration was also probably recorded in 
terms of Gauss, and the magnet pole piece diameter, which determines effR , is conveniently 
expressed in centimeters. Let’s manipulate (21-5) to make use of these more convenient 
units. 

Consider the following rearrangements of the terms in (21-5): 
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In the final expressions, a factor of the electron charge eq  is used to divide a factor of energy 
(either T or 2

em c ). If these energies are expressed in electron volts (eV) then dividing by eq  
simply changes the units from eV to V (Volts), an SI unit. Using these forms for the terms 
and rescaling the physical quantities in (21-5) to be more appropriate for your data (B in 
Gauss, T in MeV, effR  in centimeters), we can rewrite (21-5) in our final form, (21-6). 
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  (21-6) 

The divisions by various units in these expressions mean that your data should be expressed 
in these units before attempting to fit 2B  v. T (i.e. energies in MeV, B in kilogauss, e.g.: 
490G 0.49kG= ). The relativistic expression include a term quadratic in T which is not 
present in the Newtonian expression; it is up to you to determine which theory better 
represents your data. Note that if the relativistic expression is more accurate, then the ratio of 
the linear and quadratic coefficients of T should be consistent with twice the electron rest 
energy; whereas the quadratic term coefficient provides a determination of the magnet’s effR . 

Use your 137Cs and 133Ba calibration data to calibrate the MCA channel axis to energy 
conversion function; make sure you include Compton edges as calibration points (see 
equation (21-A-1) on page 21-A-1. This calibration, naturally, will introduce an element of 
systematic uncertainty to the energy data; similarly, uncertainty in your Hall probe 
calibration will systematically affect the B data. Make sure you handle these systematic 
uncertainties correctly as you perform your data analysis! 
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Appendix A: Useful Numerical Data 
 

133Ba calibration source 

 
Fig. A-1: 133Ba decay scheme showing γ-photon energies and emission probabilities. The β 
decay to 133Cs is via electron capture (nearly always from a 1s electron state), emitting an 
(undetected) electron neutrino from the proton to neutron conversion and generating an 
x-ray from the following 2p-1s atomic electron transition. 

137Cs conversion electron energies 

 K line (1s conversion e−): 0.6242MeV   
 L line (2s conversion e−): 0.6557 MeV   

Compton edge energy calculation 

The Compton edge energy is defined as the maximum electron kinetic energy deposited in a 
detector by a 180° Compton scatter of a γ-photon. This energy is given by: 
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  (21-A-1) 

where 0k  is the incoming photon energy, 2
em c  is the electron rest energy (0.511 MeV), and 

edgeT  is the spectrum Compton edge energy. 
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Silicon detector γ-photon sensitivity data 

 
Fig. A-2: Mass attenuation coefficient data for silicon. As indicated in the plot, 
photoelectric absorption is unlikely for photons with energies >300 keV or so.  

 Silicon mass density: 32.33gm cm   
 Detector thickness: 0.3cm    
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