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INTRODUCTION: THE GEIGER-MÜLLER RADIATION DETECTOR 

In this experiment you will investigate the properties of a Geiger-Müller gas ionization 
detector and use your data to determine the mobility of atomic ions in a gas as they move 
under the influence of an applied electric field.  

The Geiger-Müller high-energy particle detector was invented by Hans Geiger, Ernest 
Rutherford and Walther Müller at the University of Manchester, UK, in the early part of 
the 20th century. Comprised of a cylindrical metal tube surrounding a very thin central 
wire, the interior of a modern version of the device is filled with a mixture of a noble gas 
(Ne) with a small amount of a halogen (Br2) (see Figure 1). Applying several hundred 
volts between the positive central wire (the anode) and the surrounding cylinder (the 
cathode) activates the detector; high-energy particles entering the detector cause current 
pulses in the power supply lines as the electrons and ions generated in the fill gas move 
toward the two conductors. 

 

Figure 1: A sketch of a Geiger-Müller gas ionization detector. An energetic photon can 
eject an electron from the cylindrical metal tube into the gas-filled interior. The electron’s 
acceleration toward the center wire results in a Townsend avalanche of electron-ion pairs 
and UV photons near the wire. 
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High energy photons entering the cylindrical wall of the detector may cause an electron 
to be ejected from the interior of the wall by either Compton scattering or photoelectric 
absorption. The electron is attracted toward the central wire because of the electric field 
between the wire and the detector wall. This field is very strong near the wire, and the 
electron may accelerate enough between collisions with the gas atoms that those 
collisions become increasingly violent, exciting electrons in the atoms or even ionizing 
them. Freed electrons cause subsequent ionizations of their own, leading to a so-called 
Townsend avalanche (c.1897 by John S. Townsend, then at Cambridge, UK) of electrons 
toward the central wire and an exponentially increasing concentration of ions near it, as 
in figure 2. The final number of electrons in a single avalanche is typically 106 or higher. 

 
Figure 2: If the electric field near the center wire is strong enough, a free electron in the gas 
will cause a Townsend avalanche of electron-ion pairs and UV photons near the central wire 
of the detector. The ion concentration increases exponentially very near the wire. The UV 
photons trigger additional avalanches throughout the interior of the detector. 

A proportional detector works in a similar fashion, and once a single Townsend 
avalanche is created the detector responds with a current pulse proportional to the charge 
in it. The Geiger-Müller detector goes a step further, however. Atoms excited during an 
avalanche decay by emitting photons which may be absorbed by other atoms throughout 
the interior of the detector, releasing additional electrons and triggering more avalanches. 
Consequently the entire interior of the detector is quickly filled with thousands of 
avalanches, and the center wire is surrounded by approaching electrons and a 
nearby cylindrical sheath of positive ions. Because of this spread of avalanches 
throughout the tube, the initial energy deposited by the original ionizing particle has a 
negligible effect on the total charge in the ion sheath; the Geiger-Müller detector is not 
capable of determining the energy of the triggering event, but its output is so large that no 
additional amplification of the detector’s output is necessary. 



 20 - 3 3/28/2012 

The avalanches stop forming when the free electron concentration near the positively 
charged center wire reduces the electric field surrounding it so much that other, more 
remote free electrons can no longer reach high enough kinetic energies to produce 
additional ionizations. The entire process from initial avalanche to this complete 
electron+positive ion sheath formation takes about a microsecond. 

THE FIELDS IN THE GAS AND THE THRESHOLD VOLTAGE 

A high voltage power supply is connected between the central wire and the shell of the 
detector so that electrons are accelerated toward the wire and produce the Townsend 
avalanches and the subsequent ion sheath. The central wire is, of course, attached to the 
positive terminal of the power supply so that electrons are attracted toward it. Prior to any 
ion formation the cylindrically-symmetric electric field between the wire and the 
concentric conductive tube (except near the ends of the tube) is easy to derive and is 
given in equation (1). 
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where 0q  is the initial positive charge on the center wire and L is its length. Experiments 
have determined that an electron needs a kinetic energy of ~36 eV on average to ionize a 
neon atom (see references). In the detector you will use, fields on the order of ~105 
Volts/meter are required for electrons to achieve this energy and initiate or continue an 
avalanche. The line integral of the field from the surface of the center wire (radius a) to 
the tube (inside radius b) gives the potential difference, which is the power supply bias 
voltage 0V  when no ions are present: 
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The minimum value of 0V  for which the detector will produce an ion sheath is called the 
Threshold voltage, ThV , and the corresponding electric field strength at the surface of the 
center wire is ThE . The violence of the avalanches and thus the charge density in the 
resulting ion sheath increase roughly linearly as the bias voltage is increased beyond ThV .  

If the bias voltage becomes too high, the electric field is so strong that thermal collisions 
in the gas may ionize an atom and spontaneously initiate an avalanche. At this point the 
detector continually generates false detections and may even experience electric 
discharges (sparks) within the tube. Operating the detector at such a high voltage will 
very quickly cause permanent damage to it. For the detectors you will use, this limit 
is reached at approximately 1100V. 
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TOTAL CHARGE OF THE ION SHEATH AND ITS INITIAL RADIUS 

As the bias voltage applied to the detector is increased above ThV  the average total charge 
in the positive ion sheath increases as well, as mentioned previously. The positive ions 
are highly concentrated near the center wire, as discussed in Appendix A to this 
experiment. The mean radius of this initial ion sheath and its total charge determine the 
subsequent dynamics of the free electrons and the positive ions as described in that 
Appendix.  

The total charge of the positive ion sheath may be determined if the external Geiger 
counter circuitry is configured in Charge Integration Mode (see Appendix C to this 
experiment). Figure 3 shows screen captures of an oscilloscope recording of the output in 
this mode; the total charge in the ion sheath ( pq ) is proportional to ,pV  the maximum 
output voltage of a pulse, which occurs when the ions and electrons have all reached their 
respective conductors in the detector (outer shell for the ions and center wire for the 
electrons). The left-hand image in Figure 3 shows that pq  at 850V bias is approximately 
60% larger than at 800V for the detector used. 

   
Figure 3: Oscilloscope screen-captures of the output in Charge Integration Mode for two different 
detector bias voltages: 800V and 850V. The image on the left shows the maximum output voltages 
for events detected for each of the bias voltages; as explained in Appendix C, the maximum output 
voltage, Vp, is proportional to the total charge in the ion sheath. The right-hand image shows the 
initial rise of detection events at each of the two bias voltages, as indicated by the dashed box and 
arrows. The initial, steep, linear portion (ending at voltage Ve, where a cursor is positioned) gives 
estimates of the time required for ion sheath formation and its initial radius, rs0. 

The initial portion of an output pulse in Charge Integration Mode (right-hand image in 
Figure 3) rises very rapidly as the ion sheath is formed and the free electrons are collected 
at the center wire. It is evident from the figure that ion sheath formation requires less than 
~2 μsec for each of the events shown. The voltage at the end of this initial stage, ,eV  may 
be used to estimate eq  (see Appendices A and C of the experiment). The ratio / peV V  
may then be used to estimate the initial ion sheath radius (equation (C8)). The dV/dt slope 
just beyond eV  may be used to estimate the Ne+ mobility, μ (see (C9) and Appendix B). 
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DEAD TIME AND RECOVERY TIME 

The modification to the field following an ionization event and the subsequent motions of 
the free electrons and ions are investigated in Appendix A to this experiment. Once an 
ionization event occurs and an ion sheath is formed around the center wire, the free 
electrons quickly gather around the center wire causing the electric field in the detector to 
drop too low for another such event to occur. The field recovers as the positive ion sheath 
moves away from the center wire, returning to the initial value (2) when the positive ions 
have all reached the outer conductive shell (the cathode); Figure 4 illustrates this 
behavior. 

 
Figure 4: Effect of the free electrons and a thin positive ion sheath on the electric field. 
The electrons have gathered at the center wire (radius = a), reducing the field there below 
the threshold field strength. As the ion sheath moves outward, the induced charge on the 
center wire increases the field back toward its initial value, E0 (dotted line). When the 
field strength exceeds ETh (dashed line), new events may be detected. Ion sheath positions 
of 2, 4, and 8 times a are shown; the field reaches ETh when the ion sheath reaches 13a 
for the hypothetical case illustrated here (E0 = 1.2 ETh). 

If 0 ThV V> , then at some time before full recovery of its initial strength the field will 
become strong enough for new avalanches to be generated, though with reduced strength. 
This occurs when the electric field at the surface of the center wire has recovered to at 
least ThE  (see Figure 4). Until this happens, the detector cannot respond to a new high-
energy particle interaction. The time it takes for the field to recover to ThE  is called the 
dead time, Dt . The additional time required for full recovery to 0E  is called the recovery 

2 4 6 8

ETh

r a

Fi
el

d 
st

re
ng

th



 20 - 6 3/28/2012 

time, Rt . This phenomenon may be observed by looking at output pulses generated by the 
detector when exposed to a strong source of ionizing photons (how short output pulses 
are produced by the external circuitry is described in the Pulse Mode section of Appendix 
C). 

 
Figure 5: Oscilloscope screen-capture of many superimposed pairs of closely-spaced 
detector output pulses. Pulse height varies with the strength of the Townsend avalanches 
for that detection event. Cursor 1 is positioned tD (dead time) after the first pulse of a pair. 
Cursor 2 is positioned close to tR (recovery time) after Cursor 1. V0 = 805V for this data. 

Figure 5 shows a screen capture of an oscilloscope recording of many pairs of pulses 
occurring close together, with the external circuit configured in Pulse Mode (Appendix 
C). Note from the figure that no pulses are visible until 80 microseconds have elapsed 
following the first pulse, so 80 secDt µ= . Pulses arriving shortly after Dt  are very 
small, corresponding to internal field strengths close to ThE . Approximately another 97 
microseconds must elapse before a second pulse will be as intense as the first 
( 97 secRt µ≈ ), a total of 177 secµ  following the first pulse. It should be clear from the 
figure that although Dt  may be straightforward to measure, an accurate determination of 

Rt  may be difficult because of the slowly rising pulse amplitude as Rt  is approached. 

The speed with which the ion sheath moves under the influence of the electric field is 
determined by the ions’ mobility, as defined by (A9) and examined in detail in Appendix 
B to this experiment. 
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QUENCH GAS 

The gas in the detector is a mixture of neon and a few percent bromine. Since neon is the 
primary fill gas, most of the positive ions in the initial sheath are also neon. If neon were 
the only constituent of the gas, then these ions would reach the cathode (stainless steel) 
and be neutralized by an electron transfer from the cathode. The ionization potential for 
Ne is 21.6eV, and the work function for stainless steel is 4.4eV. Consequently, the 
electron transfer is exothermic, releasing 17.2eV/ion. Since this energy is  4.4eV, it is 
possible that the energy release may cause the emission of an extra electron from the 
cathode surface. That electron would then be accelerated toward the center wire, leading 
to another Townsend avalanche and the subsequent formation of another ion sheath! This 
process could be repeated indefinitely, leading to a continual output of pulses from the 
detector. 

Although the probability is small that a neon ion neutralization at the cathode will lead to 
an additional electron release, there are very many ions in the sheath, especially for 
higher bias voltages. Thus the resulting probability of at least one electron release can be 
quite high. To prevent this multiple (or even continual) pulse generation triggered by a 
single event, a quench gas is added to the tube. A halogen such as bromine has a much 
lower ionization energy than neon (11.8eV). The probability that bromine ion 
neutralization at the cathode will lead to an additional electron emission is acceptably 
small, and little multiple pulse generation occurs. 

As the neon ions of the initial sheath formation drift toward the cathode, they collide with 
many bromine molecules, and these collisions eventually result in an electron transfer 
from the bromine to the neon, converting the neon ions to bromine ions during the 
sheath’s drift toward the cathode. As a result the sheath is nearly all Br+ when it reaches 
the cathode. 
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PRELAB PROBLEMS 

Use the detector specifications listed below for these problems. You also need to have 
read this experiment’s Appendices (A – C) to answer these problems. 

1. Determine the detector’s capacitance in picoFarads (neglecting end effects). Assume 
that the fill gas permittivity is the same as that for vacuum. 

2. Refer to the data in Figure 3. Which of the pulses (dark or light gray) corresponds to 
the higher bias voltage (850V)? Using the cursor voltage values shown in the figure 
(corresponding to pV  and eV  of Appendix C) calculate the positive ion sheath’s initial 
radius ( 0sr ) for each of the two bias voltages. 

3. Calculate the charges 0q , pq , and eq  from the data in Figure 3 for the 850V bias 
pulse. Assume the circuit capacitance is 1.1 nF and the detector capacitance is 2.6 pF. 
Is inequality (A17) satisfied? What does this imply about the thin sheath 
approximation used in Appendix A for this case? 

4. What would be the threshold voltage, ThV , if the threshold electric field at the surface 
of the center wire for ion sheath formation ( ThE ) is 7500 Volts/centimeter? 

5. What is ratio of the mobility of an ion in the detector to its mobility at the standard 
pressure of 760 Torr (Table B-1)? Assume the detector gas is at 25°C. What would 
you expect the measured mobility (in cm2/V/sec) of Ne+ to be in the detector? 

 

DETECTOR SPECIFICATIONS 

 

Center wire radius a 0.3175 mm = 0.0125 inch 

Shell radius b 7.62 mm = 0.300 inch 

Length L 14.76 cm = 5.81 inch 

Fill gas pressure p 425 Torr @ 25° C 

Gas composition  98% Ne + 2% Br2 
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PROCEDURE 

During this experiment you will: 

1. Examine the variation in the ion sheath charge with detector bias voltage, 0V , and 
estimate the threshold voltage, ThV , of a Geiger-Müller detector. 

2. Estimate the variation in ion sheath initial formation radius, 0sr , with 0V . 
3. Examine the variation in detector dead time, Dt , with bias voltage. 
4. Estimate the mobility, μ, of Ne+ ions in the detector. 

You must have the most recent version of CurveFit, which has been upgraded to 
include a function for loading the oscilloscope data format. 

Detector Circuit 

 
Figure 6: The circuit used for the experiment. Switch position A puts the system in Pulse 
Mode, and position B puts it in Charge Integration (CI) Mode (see Appendix C). A total 
circuit stray capacitance of ~0.1nF is also indicated. The 10k resistor in series with the 
detector anode (center wire) is to limit current flow and protect you from electric shocks. 

Figure 6 is a schematic diagram of the circuit you will use. The oscilloscope must be 
connected to a computer so that waveforms may be saved. 

Never exceed 1100V or the detector may be permanently damaged by continuous 
discharge. 
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Initial Setup 

Start with a bias voltage of +800V to +850V, and with a 10x probe connecting the circuit 
output to the oscilloscope input. After setting the trigger, time/division, and volts/division 
on the oscilloscope appropriately, you should see occasional pulses from background 
radiation. In Charge Integration (CI) Mode (circuit switch position B, 10MΩ) you should 
see pulses similar to those in the left image of Figure 3. In Pulse Mode (switch position 
A, 10kΩ) you should see pulses similar to those in Figure 5. Make sure the oscilloscope’s  
CH 1 MENU  shows that a 10x probe is being used, so displayed voltages are correct. 

Other useful oscilloscope buttons and options: 

 RUN/STOP   Push this button to pause and hold a particular pulse for analysis or resume 
triggering. 

 SINGLE SEQ   Push this button to have the oscilloscope capture a single pulse and then 
pause. Use RUN/STOP to resume normal, continuous operation. 

 DISPLAY   Push this button to call up the DISPLAY menu on the screen. The PERSIST 
menu choice may be set to  Infinite  to hold all acquired sweeps and 
generate a display of multiple pulses as in Figure 5. 

 CURSOR   Push this button to call up the CURSOR menu on the screen and use the 
cursors to make measurements. 

Start the OpenChoice Desktop software, and select the USB instrument (which should be 
the oscilloscope). Attempt a Screen Capture and a Waveform Data Capture using the 
software. The screen capture image may be saved to disk in any of a number of image file 
formats. The waveform data may be saved in either CSV or Text (tab delimited) format 
for later import into CurveFit. 

Charge Integration Mode Measurements 

The pulse maximum output voltage in CI mode ( pV ) provides a measurement of the total 
charge in the positive ion sheath, pq . This charge approaches 0 as the bias voltage is 
reduced toward the threshold voltage, ThV . Measure pV  as you reduce the bias voltage, 

0V , from 800V. You should get several data points down to at least 760V. Estimate ThV  
by reducing 0V  to the point where the pulses just vanish. You will determine ThV  more 
accurately during your data analysis. 

What is the total charge on the center wire ( 0q ) at your estimated ThV ? Use (A17) to 
estimate the maximum ion sheath charge pq  for which the analysis of Appendix A is 
valid. What is then the maximum pulse output voltage  corresponding to this charge? 

Capture waveform data for at least three different bias voltages which result in pV  values 
of 2 Volts or less. Make sure you perform two captures for each 0V : one with a time scale 
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long enough to see the peak voltage and one with a much shorter time scale and higher 
vertical sensitivity so that you can accurately determine eV  and outdV dt  just above eV
(similar to the two images in Figure 3). You will use this data to determine the mobility 
of the Ne+ ion. 

Record pV  vs 0V  data for several voltages between 800V and 950V. Finally, increase the 
time/division enough to see the exponential decay in the CI pulse output (as in Figure 
C2). Capture this data for later determination of the decay time constant using CurveFit. 

Dead Time Measurements 

Change the detector circuit to Pulse Mode and set 0V  to ~850V. Use a 137Cs source set 
just under the detector. Adjust the oscilloscope to see an output similar to Figure 5, and 
then set the display persistence to infinite. Let the display build for several minutes, until 
you can accurately determine the dead time (you should have many more pulses than are 
shown in Figure 5). Position a cursor at the dead time position ( Dt ) and save an image of 
the oscilloscope screen. Repeat this for at least 3 other bias voltages between 780V and 
950V. 

ANALYSIS 

A linear fit of your pV  vs 0V  data for bias voltages of 800V and less should allow you to 
determine ThV . Should you fit with 0V  as x or as y if the y-intercept of the linear fit is to 
be ThV ? Does the relationship between pV  and 0V  remain linear over the entire 760V to 
950V bias range? 

Use your long, exponential decay data of the CI pulse to determine the RC time constant τ 
of the circuit in CI mode (it should be ~ 5 or 6 ms). R = 5MΩ (two 10MΩ in parallel); 
what is the total circuit C? You will need this value to use with equation (C9). 

Estimate 0sr  values from your pV  and eV  data and the dimensions a and b of the detector. 
How does 0sr  vary with 0V ? Remember, eV  is the voltage where you see an abrupt 
change in the slope of Vout only a few μsec following the start of the pulse. Below eV  you 
should note that Vout vs time is remarkably linear. 

Perform a linear fit to a portion of the data below your estimate of eV  and another linear 
fit to the data just above your estimate; the intersection of the two fit lines should be a 
better determination of eV  (if your two linear fits are 1 1V a b t= +  and 2 2V a b t= + , then 

1 2 2 1 2 1( ) ( )/eV a b a b b b= − − ). Now you can get a more accurate calculation of 0sr  using 
equation (C8), and the slope of the second fit provides the outdV dt  value you need for 
equation (C9) and a determination of the mobility of Ne+, μ. Convert your mobility to a 
value for 760 Torr pressure and compare to the value in Table B-1. Repeat for your other 
data at different bias voltages. 
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APPENDIX A 
ELECTRODYNAMICS OF THE CHARGES IN THE DETECTOR 

If the voltage difference between the center wire and the surrounding metal tube of a 
Geiger-Müller detector is large enough, a high-energy particle may initiate a Townsend 
avalanche, culminating in the formation of a cylindrical sheath of free electrons and their 
parent ions surrounding the center wire (as described in the Introduction). Before such an 
event occurs the gas filling the detector contains no free charges, and the electrostatic 
field in the gas is described by equations (1) and (2) of the main text, where 0V  is the 
initial potential established across the detector by the high-voltage power supply, and 0q  
is the initial positive charge on the center wire. 

Once a particle is detected electron and ion sheaths are established very close to the 
center wire, where the electric field is strongest. Because the ion formation increases 
exponentially as an avalanche approaches the center wire (Figure 2 of the main text) the 
effective thickness of the newly-formed positive ion sheath may be assumed to be quite 
small compared to its mean radius. We thus assume that it may be modeled as a thin, 
uniform shell of charge surrounding the center wire at radius sr  with total charge pq . For 
the theory presented here we assume that this shell of charge remains thin as its radius 
expands toward the outer conductor. The conditions required for the shell to remain thin 
are investigated later. For the derivations which follow we assume that the free electrons 
in the gas also form a thin shell as they fall toward the center wire, but the results will be 
the same whether or not this is true. The charge configuration and the associated 
variables are defined in Figure A-1. 

 

Figure A-1: A schematic cross-section through the detector showing the positive ion sheath 
and the free electrons. The symbols used in the derivations of this section are also defined 
here. The total charge of the free electrons is, of course, pq− . 
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The cylindrically-symmetric electric field at any point within the detector is easy to 
derive by considering the electric flux through the surface of a cylinder of radius r: 
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where insideq  is the total charge inside radius r.  

Using (A1) and the fact that the total charge of the free electrons is pq−  (charge 
conservation!), it is evident that the electric field outside of the volume between the 
electron and ion sheaths is determined solely by the charge on the center wire, q. 
Between the two sheaths the electric field is reduced by the presence of the electrons’ 
charge pq− . The potential difference between the anode and cathode is thus given by 
(A2). 
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The electrons’ mobility in the fill gas is ~103 times that of the much larger, heavier ions, 
so the electrons freed in any particular avalanche fall quickly toward the center wire 
before their associated ions can move a significant distance away from their initial 
positions. All of the electrons fall to the center wire surface (at radius a) as the entire ion 
sheath forms over a period of ~1 microsecond. From this time onward er a=  in equation 
(A2), whereas sr b→  over the next ~102 microseconds. During this latter period of ion 
motion the electric field near the center wire evolves as: 
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INDUCED CHARGE TRANSFER THROUGH THE EXTERNAL CIRCUIT 

To proceed further one must determine the function ( )sq r  for the charge on the center 
wire using (A2). This function depends on the details of the external circuit connected to 
the detector (through the impressed voltage ( , )sV V q r= ), but consider the simple case 
where the entire external circuit consists of just the power supply, so the potential across 
the detector is always fixed at 0V . 

Before the formation of the ion and electron sheaths, the potential and charge are related 
by equation (2). This relation is conveniently described using the definition of the 
capacitance of the detector, dC : 
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For the detector you will use 2.6 pFdC ≈ (pico Farad). Since we assume that 0V V= , 
equation (A2) becomes: 
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Note that (A5) implies that charge 0q q−  is transferred through the external circuit to the 
center wire by the power supply as the ion and electron sheaths move through the interior 
of the detector, even though neither sheath may have reached its respective terminal! This 
induced charge transfer from the cathode to the anode as the charges move through the 
gas ensures that once er a=  and sr b= , the power supply has already transferred a total 
charge of pq  to cancel the charge transfer within the gas, restoring the initial state of total 
charge 0q  on the center wire ( and, of course, 0q−  on the external conducting tube). 

We can thus measure the total ion charge pq  by measuring the total induced charge 
transferred through the external circuit, 0q q− . In the first microsecond or so of this 
transfer, the induced charge is overwhelmingly determined by the free electrons moving 
from the ion sheath initial radius 0sr  to the surface of the wire at a. Once this initial 
electron motion is finished, a much slower induced charge transfer takes place as the 
heavy ions move outward. If we call the induced charge transfer due the initial electron 
motion eq , then from (A5) 
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We can therefore estimate the initial radius of the thin ion sheath from measurements of 
eq  and pq : 
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Following the free electron collection at the center wire, equation (A1) determines the 
electric fields at the inside and outside surfaces of the positive ion sheath: 
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THE EQUATION OF MOTION OF THE ION SHEATH 

The ions move away from the center wire under the influence of the electric field in the 
gas. The ion mobility, μ, determines the average velocity at which the ions move (see 
Appendix B):  

 
ion ionv Eµ=





 
(A9)

 
The effective electric field which determines the motion of a thin ion sheath is the mean 
of the fields on either side of it, equations (A8), so 1 1

2 2( ) ( )eff s sE E r E r< >= +
  

, and: 
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(A10)
 

Equation (A10) can be integrated formally to provide the time at which the sheath 
reaches sr , starting from its initial radius near the center wire, 0sr : 
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(A11)

 

Given equations (A10) and (A7) a numerical integration of (A11) is now possible, giving 
the time evolution of the ion sheath’s position. The time evolution of the induced charge 
transfer through the circuit is then, from (A5): 
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(A12)

 

The initial velocity of the positive ion sheath (when it is at 0sr ) is, using (A6) and (A10), 
and the resulting rate of change of ( )q t , using (A12), are: 
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LIMITATIONS OF THIS MODEL 

For the entire thickness of the ion sheath to move away from the center wire, it must be 
true that the electric field at the sheath’s inner surface points away from the wire, so, 
from (A8), it must be true that 

 
0 e pq q q+ >

 
(A15)
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What if (A15) is not satisfied, which may often be the case for 0 1.2 ThV V>


? In this case 
not all electrons will immediately fall to the center wire’s surface, because the field near 
the inner surface of the sheath will disappear when the center wire’s charge has been 
cancelled by only a fraction of the total number of free electrons available. The outer 
edge of the ion sheath will still expand away from the center wire, however, because of 
the mutual repulsion of the ions in the sheath. Equation (A5) indicates that this expansion 
will lead to additional induced charge on the center wire, attracting more of the electrons 
to it as the sheath expands. In addition, significant electron-ion recombination may occur 
near the inner surface of the sheath, reducing pq  to the point that (A15) becomes 
satisfied. Accurate modeling of these processes is potentially difficult and beyond the 
scope of this text, but this qualitative description indicates that the total charge pq  of the 
ion sheath will not increase indefinitely as 0V  is increased well beyond ThV . 

One implication of this argument is that for high values of 0V  it may be that 0 peq q q+ ≈ , 
so that (A6) or (A7) defines a unique relationship between pq  and 0sr  for a given 0V . 

Even if (A15) is satisfied, the thickness of the ion sheath increases as the sheath moves 
outward because of the mutual repulsion of its constituent ions. The difference in the 
electric fields on the two surfaces of the sheath determines the rate of growth of its 
thickness; the ratio of this growth to the sheath expansion rate (A10) gives the change in 
sheath thickness for a change in its radius. 

Using equations (A8), and defining Δ to be the ion sheath thickness, with sr∆ : 
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(A16)

 

The growth of the relative thickness of the sheath is most rapid while it is near the center 
wire, since q is smallest at the start of the sheath’s motion. Once the electrons are 
collected, 0 eq q q> + , so the sheath will remain relatively thin only if 

 
3 3

0 2 2p e pq q q q> − ≈
 

(A17)
 

Because the capacitance dC  of the detector is small, the initial charge 0q  may be quite 
small, even for a large supply voltage 0V . For the self-limiting case discussed in 
connection with (A15), where 0 peq q q+ ≈ , (A16) implies that the sheath thickness grows 
twice as fast as the sheath radius, and the thin sheath approximation is certainly invalid.  
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APPENDIX B  

MOBILITY OF IONS IN A GAS 

In this appendix we consider the average velocity with which an ion will drift in a gas 
when exposed to an electric field. This problem is very similar to that of electrical 
conduction in solids, as you will recognize if you performed Experiment 24, Temperature 
Coefficient of Resistivity, in Physics 6. It is also related to the discussion of General 
Appendix B, Cross Sections, and we assume that you have already reviewed that 
appendix. 

STATISTICAL PHYSICS PRELIMINARIES; MEAN FREE PATH 

The Geiger-Müller detector contains a gas mixture of Ne and Br2 at a pressure 
425 TorrP = (at 25°C). Assuming the gas is ideal, (a very accurate assumption in this 

case), the equation of state is: 

 
/n P kT=

 
(B1)

 
where n is the number density of the particles in the gas, and k is Boltzmann’s constant. 
This number density will not vary with the lab room temperature because the 
volume of the detector is fixed. For the fill pressure and temperature specified,  

 
19 31.4 10 / cmn ≈ ×

 
(B2)

 
The gas is, of course, in thermal equilibrium at the lab room temperature, T. Each atom, 
molecule, ion, or free electron in the gas will fly about with its own random, thermal 
velocity, colliding with other particles in the gas and exchanging energy and momentum. 
As we know from the kinetic theory of gasses, the mean kinetic energy of a particle in 
each of its 3 spatial degrees of freedom ( ˆ ˆ ˆ, ,x y z ) is ½ kT, and the velocity distribution of 
the particle in each dimension is Gaussian with mean = 0 (no electric field) and 

/v kT mσ = . The average 1- and 3-dimensional speeds of a particle in the gas are thus 

 

( )RMS

RMS

1 dimension: / ; (2/ ) /

3 dimensions: 3 / ; (8/ ) /
x xv kT m v kT m

v kT m v kT m

π

π

= =

= =  
(B3)

 

These speeds vary from ~200 m/s for bromine to ~560 m/s for neon to ~105 m/s for free 
electrons. These speeds are several times faster than the average ion drift velocities in the 
detector due to the electric field, except very near the center wire. 
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The mean distance that a particle travels between collisions in a gas is called the mean 
free path, λ. The probability that a particle will travel at least a distance r from its current 
position before suffering another collision is independent of how far it has travelled up to 
that point and is given by: 

 
( )( ) expP r r r λ′ > = −

 
(B4)

 
Compare this description of the probability of avoiding an interaction with another 
particle in the gas to the discussion in General Appendix B leading up to its equation 
(B-12). Comparing that equation with (B4), it is clear that for high-speed particles 
traveling through a medium (so that the target particles of the medium can be thought of 
as motionless), 1( )Snλ σ −= . If all of the particles are moving with a Maxwell velocity 
distribution, then the average relative speed between two particles is greater than either 
one’s average speed, so the collisions experienced by a particle are more frequent, and 
the mean free path of an individual particle turns out to be:  

 

1
2 Sn

λ
σ

=
 

(B5)
 

Where Sσ  is the total cross section for a collision (scattering) of the particle with another 
particle, which should be 2Dπ , where D is the mean diameter of the two particles, 

1 3Å−  for the atoms and molecules of the gas. The mean distance the particle will 
travel between collisions is  

 0 0 0

( ) ( ) expd r rr r p r dr r P r r dr dr
dr

λ
λ λ

∞ ∞ ∞  ′= = − > = − = 
 ∫ ∫ ∫

  

thus the identification of λ with the mean free path. The mean time between collisions is: 

 
( )/ 8 / 3 / /S v v vτ λ π λ λ= = ≈

 
(B6)

 

MOTION OF IONS; MOBILITY 

An ionized atom of the gas will generally fly about randomly as described above, 
although its charge will cause an extra attractive force as it approaches a neutral atom, 
because of an induced dipole moment in the neutral atom. This means that the cross 
section for collision, ,Sσ  will be somewhat larger for an ion than for a neutral atom.  

If an external electric field is imposed on the gas, the ion will experience a force which 
will accelerate it between collisions. As a consequence, the ion’s average position will 
drift along the lines of electric force. If the mean time between collisions is short and the 
electric field is not too strong, then the additional velocity the ion acquires between 
collisions because of the electric force will be small compared to its average random 
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thermal speed, and each collision will be violent enough to completely randomize its 
velocity vector. 

The ion will feel a force F qE ma= =
 

  between collisions, and for any typical ion in the 
gas, its last collision will have occurred an average of Sτ  previously. Since an ion’s 
average velocity immediately following a collision is 0, the average drift velocity of the 
ion in the gas will be Saτ , so, using (B3), (B5), and (B6): 

  
d S S

qEv a E
m

τ τ µ= = ≡




 

 
(B7)
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The following table lists some experimentally-determined mobilities of ions in neon gas. 

Table B-1 
Mobilities in Ne gas at 760 Torr and 25°C 

Ion μ (cm2/sec/Volt) 

Ne+ 4.10 

Ne++ 5.85 

Ne2
+ 6.11 

Br+ 6.95 

 

EINSTEIN RELATION BETWEEN MOBILITY AND DIFFUSION 

Finally, let’s use a simple statistical argument to determine the relationship between the 
mobility and the diffusion coefficient, or diffusivity, first articulated by A. Einstein in a 
paper of 1905. 

Assume a gas containing some identical positive ions is subject to a constant, uniform 
electric field in the x̂  direction, ˆxE E x=



. The potential energy of an ion in the field is 
then: ( ) xqE U U x qE x= −∇ ⇒ = −



. But for a gas in thermal equilibrium, we know that 
the probability of finding an ion with potential energy U is exp ( / )U kT∝ − , and the 
variation with position in the number density of ions in the gas must reflect this 
probability. Thus at thermal equilibrium it must be true that: 

 
/( )/( ) x

ion
qE x kTU x kTn x e e−∝ =

 
(B9)
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The drift velocity of the ions due to the force of the electric field is given by the mobility 
equation (B7); the total flux of ions (ions/area/time) due to the field will then be: 

 
ˆ( ) ( )E ion d ion xn x v n x E xµΦ = =





 
(B10)

 
On the other hand, an ion density gradient will result in diffusion of the ions away from 
areas of high density because of their random, thermal motion. This diffusion from 
regions of high density toward low density is described by the mass diffusion equation: 

 ˆ ˆ( ) ( )

diff ion

x
diff ion ion

D n
qEdx D n x x D n x

dx kT

Φ = − ∇

Φ = − = −





 
(B11)

 

Where D is called the diffusion coefficient or diffusivity of the ions in the gas and has 
units of length2 / time. In thermal equilibrium the density of the ions must be stable, so the 
total ion flux due to both the electric drift and diffusion at any point must vanish. 
Summing (B10) and (B11) gives the total flux; setting it to 0: 

 
ˆ( ) 0x

E diff ion x
qEn x E D x
kT

µ Φ +Φ = − = 
 
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D
q kT
µ
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(B12)

 

Equation (B12) is the Einstein relation we were seeking. If we use our formula (B8) for 
the mobility we can derive an expression for the diffusivity, D: 
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(B13)

 

where we’ve used the formula (B3) for .v  Equation (B13) for the diffusivity may also be 
derived directly from the kinetic theory of a classical, ideal gas. Note that diffusion will 
also tend to disperse the positive ion sheath as it moves outward from the center wire. 
This additional effect is not included in the discussion of the dynamics of the ion sheath 
in Appendix A to the experiment. 
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 APPENDIX C  

OUTPUT SIGNAL FORMATION IN THE GEIGER COUNTER CIRCUITRY 

The discussion in this experiment’s Appendix A concerned the flow of charge within the 
gas of the Geiger-Müller detector and the resultant flow of induced charge to the 
detector’s center wire (anode) and outer tube (cathode). This appendix continues that 
discussion by describing how the induced charge flow through the external circuitry is 
used to generate an output voltage, and how this circuitry in turn affects the potential 
difference between the detector’s anode and cathode. 

 

Figure C-1: A schematic diagram of the generic Geiger counter system analyzed here. 
The induced charge transferred through the circuit caused by charge motion within the 
detector is qs; qc is the charge on the external circuit capacitance, C. The detector’s 
capacitance is Cd. The high-voltage power supply voltage is V0, whereas the measured 
output voltage is Vout. The voltage across the detector is V, as in equation (A2). 

The circuit to be analyzed is shown in Figure C-1. The induced charge flow through this 
circuit caused by free electron and positive ion motion within the detector will generate 
an output voltage, outV , across the circuit’s parallel RC pair, which is in series with the 
detector’s cathode. The high-voltage power supply, 0V , is connected as shown. The 
current-limiting resistor in series with the supply output, SR , protects the user from 
serious electric shocks but otherwise has little effect on the circuit performance. 

The voltage across the detector is V, which was expressed in terms of the charge 
distribution within the detector in equation (A2). Using the notation of Appendix A, the 
induced charge transferred through the circuit by the detector, sq , is given by: 

 
0( ) ( )sq t q t q= −
 

(C1)
 

Depending on the value of R, some or most of this charge will wind up on the external 
capacitance, C. If the charge on C is cq , then the output voltage is:  

 
out cV q C=

 
(C2)
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Recall from (A4) the calculation of the detector capacitance, 2.6 pFdC ≈ . Because its 
value is so tiny, we can assume that dC C , even if we work hard to make the external 
capacitance C small in an actual circuit. Finally, the current flow through the detector is 

/sdq dt , the rate that the induced charge flows onto the center wire. Thus we know that: 

 
0 out 0 outS sV V V R dq dt V V= − − ≈ −

 
(C3)

 
With these initial observations in mind, we may proceed with the detailed analysis. There 
are two distinct operating modes of the circuit, depending on the magnitude of the RC 
time constant of the circuit’s components, τ. If τ is long compared to the time it takes for 
the positive ions to drift to the cathode, then the circuit is operating in Charge Integration 
Mode. Otherwise the circuit is operating in Pulse Mode. The circuit behavior is easier to 
analyze for the charge integration mode, so this operating mode will be investigated first. 

CHARGE INTEGRATION (CI) MODE 

In this mode both R and C are relatively large, and D RRC t tτ = + , the time it takes for 
the ions in the detector to be collected at the cathode (outside tube) following a high-
energy particle event (the dead time + the recovery time, as defined in the main text). In 
this case, the only purpose of R is to slowly drain off the charge on C and return Vout to 0, 
resetting the state of the system in preparation for detection of another event. Therefore 
the analysis proceeds assuming R →∞ , and the current flow through it during a 
detection event is negligible. In this case c sq q= , because all of the induced charge must 
pass through the capacitor C, charging it (see Figure C-2 for an example output). 

The voltage V(t) calculated from (C4) appears across the detector, and it must be used to 
replace V0 in equation (A5). Using the definition of sq  in (C1): 

 
0 out 0( ) ( ) ( )sV t V V t V q t C= − = −

 
(C4)
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(C6)
 

So ,pV  the maximum output voltage in this mode, is a direct measure of the charge in the 
ion sheath, pq , and Vout (t) may be interpreted as a direct measure of the time evolution of 
the average ion sheath radius, sr . Because dC C , it may be safely ignored in (C6). 
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Figure C-2: Actual measured Vout for a typical detection in Charge Integration Mode. The vertical 
scale is Volts, and the horizontal scales are milliseconds. The left plot shows the integration of the 
induced charge up to its maximum, qp. The right plot shows a similar pulse over a much longer time 
scale. Note the slow recovery of the circuit as C is discharged through R. Data plotted using CurveFit. 

In the example Vout data of Figure C-2, pV  is 4.7 Volts. With 1.1 nFC = , the ion sheath 
charge 9 105.2 10  Coulomb ~ 3 10p pq CV e−= = × × , and it took about 150 microseconds 
for all ions to be collected at the detector cathode. From the plot on the right, the RC time 
constant 6 msτ ≈ , about 40 times longer than the ion collection time. 

Figure 3 in the main text gives another two examples of Vout data for CI mode. The right-
hand image is a close-up of the first several microseconds of the output pulses. The 
sudden change in slope of each pulse may be interpreted as the point where ion sheath 
formation is complete, and the electron sheath has moved to the center wire’s surface. 
The voltage at this point (where the cursors are positioned for the two pulses in the 
figure) corresponds to eq  in equations (A6) and subsequent in Appendix A. Thus we may 
define the output voltage eV : 
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Let us rewrite the boxed equations (A7), (A13), and (A14) in terms of the capacitances 
and voltages (where we approximate dC C C+ → ): 

 
( )0s

e pV Vr a b a=
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Equation (C9) shows how to estimate the mobility, μ, from the slope of the output pulse 
just above the change in the slope at eV  (refer again to Figure 3 in the main text). 

PULSE MODE 

In this mode R and C are chosen so that DRC tτ =  , so that the dead time Dt , may be 
determined (as in Figure 5 of the main text). The resistor R is small enough that the 
current through it may not be ignored, and not all of the induced charge from the detector 
will wind up on C. In this mode the external capacitance C may be just the stray 
capacitance of the circuit, but it is usually still larger than dC  by an order of magnitude or 
more. It also may be the case that the voltage drop across RS is no longer negligible as 
well. If SR R  or smaller, however, it turns out that its impact on the circuit behavior is 
small, since it enters the final equation only in terms ( / )( / ) 1S dR R C C∝  . The 
derivation of the equation for Vout (t) is tedious and will be omitted. The result is (where 
terms of order /dC C  or smaller have been dropped): 

 
out out
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p s e
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(C10)

 

Equation (C10) has the same structure as that of a simple, one-pole, RC high-pass filter. 
To interpret the equation, first note that the second term on the left-hand side is just the 
negative of the discharge rate of Vout through R, so that this side is simply the difference 
between the actual rate of change of Vout and the rate expected because τ is finite. Second, 
note that the leading /pq C  is just the maximum expected Vout if this were a CI mode (cf. 
equation (C6)). Thus whenever out out( / ) /d dt V V τ , the output is the same as in CI 
mode (using the current value of C!). When the derivatives on the right-hand side of 
(C10) are approximately constant for a while, however, then so will be Vout. In this case: 
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Lastly, as the positive ions move outward toward b, the right-hand side of (C10) 
eventually becomes small, and Vout then discharges toward 0 with time constant τ. 

The choice of τ determines the maximum event detection rate the Geiger counter system 
can handle without pulse “pile-up,” where Vout responds to another event before fully 
discharging to 0. Since the Geiger-Müller detector suffers from dead time, as described in 
the main text (Figures 3 and 4), it is appropriate to choose Dtτ < . As mentioned above, 
the circuit you will test has , Dtτ   so the dead time Dt   may be accurately measured. 
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