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INTRODUCTION 

Resonant behavior can be very interesting. Providing a sinusoidal stimulus to a physical system 
at a frequency near a resonant frequency may result in a dramatic change in the system’s 
response — a change which may result in qualitatively different behavior unpredictable from the 
system’s response at frequencies far from resonance. Conversely, an abrupt, transient stimulus to 
the system may cause the system to exhibit a prolonged response consisting of a superposition of 
various oscillations at frequencies near the system’s resonant frequencies. By examining the 
response of the system to such steady-state and transient stimuli, the physicist gathers evidence 
regarding the internal degrees of freedom of the system (the system’s normal modes) and may 
use this knowledge to construct or test theoretical models of the system’s underlying structure. 

The measured response of a system as a function of the frequency of a sinusoidal stimulus 
provides a spectrum of the system’s response. Much of physics research is occupied with the 
gathering of ever more accurate and/or higher-frequency spectra of various fundamental physical 
systems. It is hoped that such experiments may discover behavior which is not adequately 
described by current theory and may provide valuable clues as to how theory may be extended or 
refined. 

In this experiment you will investigate the behavior of a seemingly simple system which may be 
modeled fairly accurately by the theory of a damped harmonic oscillator — the simplest 
example of a system with a resonant response. The system is an electrical circuit consisting of a 
series combination of a resistor, inductor, and capacitor (a “series RLC” circuit). You will 
accurately measure the circuit’s response to both steady, sinusoidal and short, impulsive voltage 
stimuli by using a fairly sophisticated, computer-controlled data acquisition system. You will 
analyze the data in part by using the CurveFit data analysis package with Mathematica®. The 
purpose of the experiment is for you to provide a detailed, critical evaluation of the simple theory 
presented to explain the circuit’s behavior and to suggest extensions to the theory, if necessary, 
to explain discrepancies between your results and the theoretical model’s predictions. 

 
Figure 1: The basic resonant system. The value of the inductance L is either approximately 10 millihenry 
(mH, 10 −3 henry) or 100 mH; the capacitance C is approximately 10 nanofarad (nF, 10 −9 farad). The 
resistance R may be varied in value as a part of the experiment, or it may have a fixed value. The input 
voltage Vin is controlled by the experimenter; Vout is the measured response of the system. 
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Figure 1 shows a schematic diagram of the series RLC circuit you will examine. A signal 
generator, oscilloscope, and computer data acquisition (DAQ) system, along with various cables 
and adapters, then complete the experimental setup (Figure 2). 

 
Figure 2: A typical setup which also includes an oscilloscope to monitor the time-varying input and 
output voltage signals. The RLC circuit is in the front right of the photo; several coaxial cables and 
adapters connect the system to the experimenter’s instrumentation. A sinusoidal stimulus is being 
applied using the signal generator at left; the stimulus and response voltages are input to a computer-
controlled data acquisition system (DAQ) using the interface box to the right of the oscilloscope. The 
computer may control the frequency of the signal generator using its USB interface, allowing the 
computer to perform frequency sweeps of Vin and measure a frequency-domain spectrum of the 
system response. 

The “resistance” R in the circuit of Figure 1 is really a combination of two independent parts. 
One part of R is the resistance of a physical component that you will insert into the circuit, which 
will have a value of a few 10’s of ohms. The other part of R represents the energy dissipation 
(loss) in the inductor’s wire coil and in its ferromagnetic core. Obviously this second piece of R 
may not be directly accessible to you, but is rather a part of the theoretical description of the 
behavior of the circuit. Your data will allow you to assign a value for this extra bit, which will be 
referred to as RL, since it is dominated by electrical energy losses in the inductor (L is the 
traditional electrical engineering designator of an inductor). 
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THEORY 

The simple theory we will examine assumes that the R, L, and C values for the circuit of Figure 1 
are all real, positive constants which are independent of time, voltage (or current), and 
frequency. The theory also assumes that Kirchhoff’s circuit laws apply to our experiment (this 
implies that the physical size of our system is so small that at the frequencies we are using the 
wavelengths of any electromagnetic waves we generate are very much larger than our circuit). 
Finally, we assume that the currents flowing into our measuring devices may be neglected, so 
that the same current I (t ) flows through the series-connected R, L, and C (see Figure 3). 
Kirchhoff’s voltage law then requires that the sum of the voltages across the components equals 
the input voltage, Vin(t ) as in Figure 3. 

 
Figure 3: The series RLC circuit identifying the circuit’s current I and various voltages, all of which are 
functions of time, t. The polarity of a positive voltage value is indicated for each voltage variable.  The 
same current flows from the source through all circuit elements, since it is assumed that Iout vanishes. A 
positive current value indicates a current flow in the direction of the arrow. Kirchhoff’s voltage law 
requires that Vin (t) = VR (t) + VL (t) + VC (t) and that Vout (t) = VC (t). 

Review this experiment’s Appendix A starting on page 21. The relationships among the various 
voltages and the current in Figure 3 are: 

( ) ( ) ( ) ( )

( ) ( ); ( ) ( ); ( ) ( )
in R L C

R L C
d d
dt dt

V t V t V t V t

V t R I t V t L I t C V t I t

= + +

= = =
 (1) 

 

Substituting and differentiating by time again gives the following differential equation for the 
dynamics of the current I (t ) due to the stimulus Vin(t ): 

( )2 2

2 2( ) ( ) ( ) ( ) 1 ( )in
d d d d d
dt dt dtdt dtC V t LC I t RC I t I t LC RC I t= + + ≡ + +  (2) 

 

The final expression in (2) rewrites the differential equation using the so-called operator 
notation. Equation (2) for I (t ) is a second-order differential equation with real, constant, positive 
coefficients. It is the equation of motion of a one-dimensional damped harmonic oscillator driven 
by an external forcing function ( ) ( )in

d
dtF t C V t= . You have already been introduced to this 

VC

+

−

VLVR + −+ −

Vin

+

−
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system in your introductory physics lecture course and probably in other classes as well. The 
driven, damped harmonic oscillator is the archetypal resonant system, and it is one of the most 
important theoretical models in physics, because successful theories of much more complicated 
physical systems are often developed by first attempting to model them as an assemblage of such 
oscillators (or their quantum mechanical counterparts). 

We may attack the problem of solving the differential equation (2) by first transforming it into an 
equivalent algebraic representation in the frequency domain, using the results of Appendix A: 
we can take the Fourier transform of the differential equation, or, equivalently, we can just use 
Ohm’s law and the series combination of the impedances of the R, L, and C as functions of 
angular frequency, ω. As indicated in Appendix A, the equivalent impedance of a series circuit is 
simply the sum of the individual component impedances, and each (often complex-valued) 
impedance is defined as the ratio of the complex-valued voltage and current phasors V (ω) 
and I (ω) across the component or circuit. 

Note our conventions:  if a voltage or current argument is frequency ω, then we are talking of a 
complex-valued phasor; we also use the symbol 1j ≡ − , and the convention that the complex 
amplitude of a sinusoid goes as exp( jωt). 

 The total impedance of the series RLC circuit relates Vin(ω) and I (ω): 

1( ) ( ) ( ) ( ) ; 1inV Z I R j L I j
j C

ω ω ω ω ω
ω

 
= = + + ≡ − 

 
 (3) 

 
This complex-valued algebraic equation (3) provides a completely equivalent statement of the 
dynamical theory relating Vin and I  to that provided by the differential equation (2). Let’s 
examine some consequences of this theory. If we use the fact that 1 j j= − , then we see that at 
one particular frequency 0 01 ( )/L Cω ω=  the imaginary part of the total RLC impedance Z in (3) 
vanishes, leaving only R. At this frequency the magnitude of Z is minimized, so the current I is 
maximized at ω0 for a given input voltage magnitude. This special angular frequency ω0 must 
satisfy the condition described by equation (4): 

0 0 0 0 0
0 0

1 1 10 ; Lj L L Z Z
C C CLC

ω ω ω
ω ω

 
− = → = ≡ → = =  

 
 (4) 

 

The exact cancellation of the L and C impedances at a particular frequency ω0 is an example of 
resonance. The first equation in (4) establishes the resonant condition, which in turn defines the 
resonant frequency (or characteristic frequency) ω0 and the characteristic impedance Z0 for 
the particular LC pair in the circuit.  
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If R is much smaller than Z0, then at resonance the impedance of the circuit is much lower (and 
the current through the circuit much higher) than it is at nearby frequencies. The ratio of Z0 and 
R is therefore an important measure of the behavior of the system near resonance. This 
dimensionless parameter is called Q, or the Quality Factor of the resonance, equation (5). 

0 1Z LQ
R R C

= =  
(5) 

 

Note that this is the only dimensionless quantity that can be formed from the dimensional 
parameters R, L, and C (other than functions of Q itself). Identifying the relevant dimensionless 
parameters in a theory of a physical system is extremely important; look at Appendix C on page 
28 for a brief discussion of this topic. We can use equations (4) and (5) to express R, L, and C in 
terms of Q, ω0, and Z0: 

0 0

0 0 0

1; ;
Z Z

R L C
Q Zω ω

= = =  (6) 

 

If we substitute the expressions (6) into the theoretical model represented by equations (2) and 
(3), we get generalized expressions which may be more widely applicable than just our series 
RLC circuit. Clearly, ω0 sets the scale for time and frequency and Z0 sets the scale for impedance 
(which converts the units of the response (current) to be consistent with those of the stimulus 
(voltage)). If we change our scales of measurement so that 0 1ω ≡  and 0 1Z ≡ , we get generic 
expressions (7) and (8). The frequency domain expression (8) has an especially pleasing 
symmetry. 

 

2

2

0 0

1 1 ( ) ( )

where:    ; ( ) ( ) ; ( ) ( )in

d d dy t f t
Q dt dtdt

t t y t Z I t f t V tw

 
+ + = 

  

← ≡ ≡

 (7) 
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where:    ; ( ) ( ) ; ( ) ( )in

j y f
Q

y Z I f V
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w
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  + − =    

← ≡ ≡

 (8) 

 

With scale factors removed, Q becomes the theory’s only relevant parameter which, along with 
the structural form of equation (7) or (8), describes the physics of the system. Your task will be 
to evaluate the adequacy of this theory to describe the observed behavior of your circuit. 
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RESPONSE TO A SINUSOID INPUT 

If ( )inV t  is a sinusoid at angular frequency ω so that ( ) Re ( )[ ]j t
inV t V e ωω= , then the frequency-

domain expression (3) provides the appropriate representation of the theory to use. For your 
experiment, however, you won’t measure the current through the circuit but rather the voltage 
across the circuit’s capacitor: ( )outV ω = ( ) ( ) ( ) ( ) /C CV Z I I j Cω ω ω ω ω= = , as shown in Figure 3 
on page 3. Using the substitutions for R, L, and C in (6), we get a frequency-domain expression 
for the system’s complex-valued gain (or transfer function) predicted by the theory: 

 
2

2
00

1
( ) 1( ) 1
( )

out

in

VG j
V Q

ω ω ωω
ω ωω

−
  
  ≡ ≡ − +
    

 
(9) 

 

The frequency-domain gain G(ω) in (9) is complex-valued. Its magnitude ( )| |G ω  and phase 
ϕG(ω) are: 

2
2 2

2 2 2
0 0

1/2
1( ) 1| |G

Q
ω ωω
ω ω

−
    = − +     

 (10) 

 

( ) 0 01 1
2 2

00

1
( ) tan tan

21G
Q

Q
ω ω ω ωπφ ω

ω ωω ω
− −

     
    = − = − + −    −       

 (11) 

 

A few words about the phase expression (11): from equation (9) it should be clear that the 
imaginary part of G (ω) is negative, because it is the reciprocal of an expression with a positive 
imaginary part. Thus 0Gπ φ− < < . The first arctangent expression in (11) shows this explicitly 
as the negative of the ratio of the imaginary and real parts of 1/G (ω) from (9). Unfortunately, the 
arctangent’s argument is discontinuous at the resonant frequency, 0ω ω= . The arctangent’s 
argument in the rightmost expression in (11), on the other hand, is continuous for all 0ω > , and 
this arctangent expression returns an angle in the branch / 2 / 2π θ π− < <  (±90°), which is also 
typically the range returned by computer function calls. 

Note from these expressions (10) and (11) that 0( )| |G Qω =  and 0( ) 90Gφ ω = − ° . Plots of G (ω) 
and ϕG(ω) for 20Q =  are shown in Figure 4 on page 7. When 2 1Q 2  the maximum of  ( )| |G ω  
occurs very close to ω0 (see prelab problem 2); elsewhere the gain is generally ≤1. The phase 
changes very rapidly with ω near ω0 as well. This is an example of resonant behavior because 
this rapid change in the gain near ω0 is quite different from the system’s behavior at frequencies 
more than a few times 0 Qω  away from ω0, which for large Q can be a very small range in 
frequency. 
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0Resonant width:  
Q
wγ ≡  (12) 

 
When 2 1Q 2 , γ as defined in (12) is the change in angular frequency (radians/second) across 
the resonance where 0 0( 2) ( ) 2/| | | | /G Gω γ ω± =  and 0 0( 2) ( ) ( 4)/ /G Gφ ω γ φ ω π± = ± −  (or 
45°). When we use frequencies f measured in hertz, we’ll refer to 0 ./f f Qγ =  

IMPULSE (TRANSIENT) RESPONSE 

If 2 1Q 2  and Vin(t ) consists a short-lived, large-amplitude change and is then held constant, the 
theory predicts that the system’s response will be to oscillate (or “ring”, like a bell) at a 
frequency very near ω0 for a number of order Q cycles before the response amplitude has 
decayed considerably. Let’s derive this result from the differential equation (7) with the scale 
factors ω0 and Z0 put back in: 

2
0 2

0 0 02 ( ) ( )in
d d dZ I t V t

Q dt dtdt
ω

ω ω
 

+ + = 
  

 (13) 

 

 
If Vin(t ) has been constant for a very long time, then the right-hand side of (13) has been 0 for a 
very long time as well, and eventually all the derivatives of ( )I t  on the left-hand side will have 
vanished. This obviously implies that for constant Vin, ( ) 0I t →∞ = . The solution to the now 
homogeneous differential equation (13) with its right-hand side set to 0 is the equation’s so-
called “complementary solution.” In this case I (t) and its derivatives are all proportional to each 

        
Figure 4: Magnitude and phase (in degrees) of G (ω)  vs. ω/ω0  for the series RLC circuit of figure 1 with  
Q = 20. At frequencies much lower than the resonant frequency the gain approaches 1. At frequencies 
much higher than the resonant frequency the gain approaches –(ω0 /ω)2. At resonance the gain is –jQ. 
Most of the change from the low-frequency to the high-frequency asymptotic behavior occurs within a 
range of only a few times 1/Q of the resonant frequency (note the log scales for frequency and gain). 
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other, so assume a solution of the form: 
/

0( ) Re Tj ttI t I e e ωt− =    (14) 

 
Expression (14) describes a damped oscillation at angular frequency ωT with a decay time 
constant τ. I0 is the oscillation’s complex-valued phasor at 0t =  and determines the initial 
amplitude and phase of the oscillation. Substituting this form for I (t) into the homogeneous form 
of (13) leads to the characteristic equation for ωT and τ: 

( ) ( )2 01 1 2
0 0T Tj j

Q
ω

ω τ ω τ ω− −− + − + =  (15) 

 
The real and imaginary parts of (15) must both vanish, giving solutions for ωT and τ: 

20

0

1
41

2 2( )

T Q

Q

ω ω

τ ω γ

= −

= =
 (16) 

 

To determine I0 in the expression (14), assume that Vin(t ) and its derivatives vanish everywhere 
except for an infinitesimal region about 0t = . Further assume that the time integral of Vin(t ) 
does not vanish within this region, but has the finite value V0T0 so that Vin(t ) applies a short 
impulse to the circuit at 0t =  but is otherwise zero.  Mathematically, 0 0( ) ( ) ( )inV t V T tδ= , 
where δ (t) is the Dirac delta function (see this experiment’s Appendix B on page 26). Before this 
impulse occurs, assume that initially I (t) and all its derivatives vanish. With these conditions 
on I (t) and Vin(t ) we can integrate equation (13) twice to determine the current and its time 
derivative at the instant just following the impulse. The integration of equation (13) is presented 
in Appendix B with results: 

2

0 0 0 0

0 4 1

(0 )

(0 ) (0 )

1 1and  1 (0 ) 1 (0 )
T

d
dt

Q

I V T Z

I I

I j I j I

ω

γ

tω −

+ =

+ = − +

  = + + = + +      

 (17) 

 

The notation “I (0+)” means the limit of I (t) as 0t →  from above, that is, the value of I 
immediately following the Vin  impulse at 0t =  (and similarly for d

dt I (0+)).  
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Finally, the solution (14) for I (t) becomes: 

 
( ) ( )

2

2
0 0 0

0

0 0

/

1
4

4 1
1( 0) cos sin

1 2

T T

T

t

Q

Q
V TI t t t e

Z

Q

tω ω ω

ω ω t ω

−
−

 
> = − 

 

= − =

 (18) 

 

The formula for the transient response time constant τ is proportional to Q and, in fact, 
equals 2 /γ (in radians/sec). Also note that Q need not be much greater than 1 for the transient 
oscillation frequency ωT to be very nearly equal to ω0. Because ( ) ( )d

outdtI t C V t= , we can 
integrate equation (14) using solution (17) to get a similar result for the output voltage, equations 
(19). Figure 5 illustrates the resultant output current and voltage responses for 20.Q =  

( )
2

2

0 0 0

0 0

/
1

4

1
4

( 0) sin
1

1 2

T

T

out
t

Q

Q

V TV t t e

Q

tω ω

ω ω t ω

−> =
−

= − =

 (19) 

 

 

 
Figure 5: Response to a voltage impulse of the series RLC circuit of figure 1 with Q = 20. The current 
through the circuit and the voltage at the output are plotted as functions of time. The vertical grid lines 
are drawn at intervals of Q/π cycles following the impulse. The horizontal grid lines are drawn at ± 1/e 
of the initial amplitude. A total of Q cycles are shown, at which time the response has decayed by more 
than 95%. Note the phase difference between the two plots. 
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PROCEDURE 

General approach and requirements 

In solving Prelab Problem 3 you calculate ω0, Z0, Q, and 0 0 (2 )/f ω π=  using assumed, 
nominal values for the circuit elements. Your lab TA or the lab instructor can tell you the 
nominal inductance L and resistance R actually present in your set-up (either 10 mH and 25 Ω or 
100 mH and 50Ω) so that you can estimate the values of these parameters for your set-up.  

At some point during the lab period you should also directly measure the circuit elements’ R, L, 
and C values. Calculations of the circuit’s expected ω0 and Q using these values and 
equations (4) and (5) may then be compared to your measured circuit parameters. 

You will first evaluate the series RLC circuit’s frequency-domain behavior not only in detail near 
its resonant frequency but also over a wide range of frequencies extending well over an order of 
magnitude away from the resonant frequency. As you collect data you will determine initial 
estimates of the circuit’s resonant frequency and Q, and will also look for behavior which may 
prove to be inconsistent with the predictions of the simple, damped harmonic oscillator theory. 

You will then reconfigure the apparatus to collect detailed data of the circuit’s transient (time-
domain) response following a narrow voltage pulse input. Initial in-lab estimates of the circuit’s 
transient oscillation frequency and decay time constant give results which can be compared with 
those estimated from your frequency-domain observations. 

The experiment set-up includes a research-grade computer-controlled data acquisition system 
(DAQ) which can take large amounts of very precise data. A secondary but important objective 
of the lab exercise is for you to become familiar with the instrumentation and software, because 
these things are used in several of the other experiments available in Physics 6 and Physics 7. 

Frequency response measurements 

Check and complete the set-up of the apparatus to first make frequency response measurements 
(Figure 6 and Figure 7 on page 11, and the photo, Figure 2 on page 2). Turn on the signal 
generator and the oscilloscope—they will each take several second to boot up and begin 
working. Both instruments are connected via USB to the set-up’s workstation computer. The 
DAQ consists of special hardware installed in the computer along with an external interface box 
for connection to the experiment apparatus. Your instructor should give you a brief 
demonstration of the operation of the equipment and software you will use. 

Once the apparatus is properly configured and the signal generator has finished its startup, 
launch the Frequency Response application (FR app) on the workstation (its icon is shown 
at left). After initializing, its window should display status and configuration information 

about the DAQ and signal generator hardware. The three tab selectors near the top of the 
application’s display window are used to select its operating mode. Start with the Manual 
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Control tab. Always use this mode to ensure that your input sensitivities and data sampling 
parameters are set for accurate data acquisition and to perform quick checks and point estimates 
of the circuit’s parameter values. Make sure you understand how the program is analyzing the 
data to produce these results. Now you’re ready to collect some preliminary data. 

Frequency Response Setup 

 
Figure 6: Frequency response general arrangement. The heavy arrows represent signal flows through 
BNC cables connecting the various assemblies. The BNC cables are connected to the RLC circuit using 
special adapters (see figure 7). An oscilloscope should be connected to the circuit’s input and output as 
well to monitor the signals. The signal generator should be set to output a sine waveform (starting the 
Frequency Response application will set up the signal generator properly). 

 
Figure 7: A BNC-Banana plug adapter. The “GND” tab on the adapter (lower center in the photo) 
indicates which banana plug is connected to the outer (shield) conductor of the BNC connector. Most of 
the lab’s electronic equipment connect the outer conductors of their BNC connectors to Earth ground 
(through the ground pins on their AC power cords) so all of these outer conductors are connected 
together via this ground path. The potential of this set of conductors is used as the reference potential 
for voltage measurements. 
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Preliminary checks and parameter estimates 

The theory of the simple, damped harmonic oscillator predicts that: 

1. 0( ) 90G ff = − °  and 0( )| |G f Q= .  We use frequencies measured in Hertz. 

2. 135 45 135 45 , where ( ) 135 and ( ) 45 G Gf f f f fγ ff = − = − = −a a  (if 2 1Q 2 ). It should also 
be the case that 135 45 0( ) ( ) ( ) 2| | | | | |G f G f G f= =  (if 2 1Q 2 ). 

3. For 0f f0 , ( ) 1| |G f →  and ( ) 0G ff → . 

4. For 0f f , 2
0( ) ( )/| |G f f f→ , and the signals should be out of phase ( 180 )Gφ = − ° . 

The above facts provide tests to quickly and roughly check the validity of the theory for the RLC 
circuit and determine point estimates of the circuit’s f0 and Q.  

Quickly find the circuit’s resonant frequency f0 by first entering the frequency you calculated in 
the Prelab Problems into the signal generator using its front-panel keypad. Consider the theory 
fact (1) above. Now monitor the measured phase ϕG using the FR app’s Manual mode display as 
you adjust the signal generator’s frequency control knob to find the actual circuit f0. If necessary, 
adjust the signal generator output amplitude to make sure that the measured Vout response peak 
amplitude remains below 2 volts, even at resonance. The application’s measurements will now 
provide quick estimated values for f0 and Q. Adjust the signal generator to various frequencies so 
as to roughly check the validity of the other facts (2) through (4) above.  

Keep good in-lab notes of your findings! 

Comprehensive data collection 

Use the Frequency Sweep tab of the program to acquire accurate spectra of the frequency 
response of the system. Your sweep data should include fine detail of the resonant peak along 
with a wide frequency range showing the circuit’s asymptotic behavior well away from 
resonance. You will probably want to complete your lab work with several sweep data files 
exploring various regions of the parameter space. 

 Save your data often! 

Save your frequency sweep data by pushing the Save Latest button on the sweep display. Then 
always select the Save All radio button in the Save dialog box. This option saves all measured 
data regarding the sweep – amplitudes, phases, etc. You can then reload the saved data file 
back into the Frequency Response application. Data saved this way may then be imported to 
CurveFit using its Data I/O function Load Frequency Response Data. A CurveFit dialog box will 
then open asking which aspect of the data set should be imported: gain magnitude, phase, or 
whatever. 



 2-13 1/20/2020 

Frequency sweep data sets are usually best obtained in increments. Perform an initial sweep 
containing relatively few data points to cover a portion of the parameter space. This data is then 
evaluated to determine if the DAQ input and response sensitivities are appropriate (these are set 
using the Manual Control tab) and that the signal generator output amplitude is appropriate (this 
must be set using the signal generator’s input panel). Once you are satisfied that you can acquire 
accurate data, more detailed sweeps of various parts of the parameter space are performed and 
then merged using the sweep window controls to build up a complete data set. 

For example, the signal generator amplitude must not be set so high that the response amplitude 
is excessive as you sweep through the resonance frequency. On the other hand, the circuit 
response at frequencies well above resonance will be very small, and noise will limit your data 
accuracy. Increasing the signal generator output amplitude for sweeps in this range can greatly 
improve your data. 

The sweep display has a blue data cursor you can drag to individual data points using your 
mouse cursor. Drag the data cursor to any data point of interest. You can then: 

1. Read off the point’s frequency and data value in the display’s cursor legend box. 

2. Copy the point’s frequency into the sweep Start Freq or End Freq box using the desired 
box’s blue button. 

3. Automatically change the signal generator frequency to the point’s value by returning to the 
Manual Control mode tab, and then ensure that the acquired signal data fits appropriately into 
the input and response windows. 

This latter functionality is very useful to check the validity of a possibly suspect data point. 

More things to keep in mind 

1. Make sure that you acquire detailed, high resolution sweep data around the resonance peak. 
Use linear gain and frequency scales for this effort to ensure that you get plenty of data 
points within a few Q ths of the resonant frequency. 

2. As you acquire data examine the phase data plot as well as the gain magnitude plot. Also 
check the input amplitude and response amplitude plots. Note that the input amplitude 
decreases sharply near the resonance. Could the signal generator’s output impedance of 50 Ω 
be a cause of this behavior? 

3. Sweep the circuit’s high-frequency asymptotic response up to at least 300 kHz. Use log-log 
plot scales when sweeping over a broad frequency range. Your data should then resemble 
an extended version of the gain and phase plots shown in Figure 4 on page 7. Getting good 
data at high frequencies will require you to make adjustments to the signal generator 
amplitude and the DAQ sensitivities. 
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4. You should check your data files using CurveFit to ensure that you have properly saved the 
data you need. Perform some preliminary fits before leaving the lab. 

Linearity of the response 

The damped harmonic oscillator theory is linear. This implies that G(ω), and, in particular, the 
system’s resonance f0 and Q, should be independent of the input signal magnitude | |inV . 

Return to the FR app’s Manual mode. With the signal generator’s amplitude set to 100 mV peak-
peak, set the generator to the system’s resonant frequency. Now start to increase the signal 
generator output amplitude in 100 mV increments, while adjusting the DAQ input and response 
settings to keep acquiring accurate data.  

Does the system’s measured gain magnitude and phase stay constant as the input is increased? 
Stop when the response amplitude is near the DAQ limit of 10 V. If necessary, readjust the signal 
generator frequency until the DAQ measured phase difference is again at −90° and record the 
new frequency and gain magnitude. If necessary, adjust the signal generator amplitude slightly to 
ensure that the acquired response data still fits in the DAQ windows so that your data are 
accurate. 

Acquire a good sweep data set of this new resonance to compare with the lower amplitude 
version you already have. 

Transient response measurements 

A buffer amplifier installed in the DAQ interface box is used the drive the RLC circuit for 
transient response measurements. The reason for this is that our analysis of the transient behavior 
assumes that the input voltage to the circuit is held constant (at 0 Volts) while the circuit rings 
down. As illustrated in Figure 5 on page 9, the current through the circuit oscillates as the circuit 
rings, so the source driving the circuit must have a very low output impedance — otherwise the 
source voltage will vary in response to this oscillating current. The buffer amplifier’s output 
impedance is less than an ohm at the circuit’s resonant frequency, so it maintains an output 
voltage which is very nearly independent of the current through the circuit.  

Reconfiguring the experiment apparatus for transient response measurements requires only one 
more BNC cable: first disconnect the existing cable from the signal generator output and 
reconnect it to the buffer amplifier output on the DAQ interface box. Use the additional cable to 
connect the signal generator output to the buffer amplifier’s input. Figure 8 on page 15 illustrates 
these changes.  

Exit the Frequency Response application. Set the signal generator output amplitude 
to 2V peak-peak and set its frequency to 1 kHz. Now start the Transient Response 
application (its icon is shown at left). After initializing, the application opens two 

windows. The top window allows adjustments to DAQ settings which will be unnecessary for 
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this experiment, so you can close this window. The main window appears similar to the front 
panel of an oscilloscope. To activate data acquisition, push the green RESUME button in the 
lower right area of the application window. You should then see the input signal as a yellow 
trace and the response as a blue-green trace. At this frequency they should have similar 
amplitudes and phases. Play a bit with the window’s controls to familiarize yourself with their 
operation. 

You should first exit the Frequency Response application whenever using Transient Response, 
and vice versa. Otherwise the two applications can generate conflicting commands to the DAQ 
drivers and hardware. 

Configuring the signal generator 

Refer to equations (19) and Figure 5 on page 9, which describe the theory’s prediction of the 
circuit’s response to a narrow pulse input. Your task will be to excite the circuit with a 
reasonably narrow, positive-going voltage pulse and then hold the input voltage at zero. The 
Transient Response application (TR app) can then record Vout(t ) data while the response signal 
rings down.  

The interval between successive excitation pulses should be long enough for the output signal to 
decay to a very small value. Figure 5 displays only Q cycles of the ringing, and from this plot it 
is clear that the excitation pulse interval should be at least 2Q to 3Q cycles. For your system a 
pulse interval of about 0200 / f  should be more than adequate. Because your circuit’s 2 1Q 2 , 

Transient Response Setup 

 
Figure 8: Transient response general arrangement. The ×1 buffer amplifier in the DAQ interface box 
isolates the RLC circuit from the signal generator so that its 50 Ω output impedance does not cause a 
variation in the RLC input voltage as the circuit rings down. Note that the only changes to the frequency 
response arrangement (Figure 6) are to (1) remove the input signal connection from the signal 
generator output and reconnect it to the DAQ amplifier output (blue connection), and (2) add a BNC 
cable connection between the signal generator output and the DAQ amplifier input (red connection).  
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the initial ringing amplitude should be very close to equation (19)’s V0T0ω0, and the ringing 
frequency 2/T Tf ω π=  should be very close to the system’s resonant frequency f0.  

First select the signal generator’s Pulse waveform button. Next use the Period menu button to set 
the pulse interval to an appropriate value using the criteria outlined in the previous paragraph. 
The pulse HiLevel (which will represent V0 in equation (19)) should be set to a volt or two in 
order to obtain low-noise data, and the pulse LoLevel should be set to 0. The pulse Width then 
equals T0 in equation (19). Why not pick a width so that 0 0 1T ω = (as in the example shown in 
Figure 9)? With this choice the pulse will be sufficiently narrow, and the initial ringing 
amplitude should be very close to the pulse HiLevel value (V0). 

Transient Response application notes 

For accurate measurements of the decay you should acquire ~Q cycles of the circuit’s transient 
response. Set the TR app horizontal TIME (in the app’s blue control area) to a value sufficiently 
large to capture this many cycles. The application’s default Number of Points will be way too 
small to resolve this many cycles, so change that setting to 1000 or so. The display area should 
now show something recognizable as a decaying oscillation. You may select the CH1 OFF button 
so that the app’s CH2 data refreshes more frequently. Make further adjustments as necessary to 
obtain a good display of the transient response oscillating decay. 

 

 
Figure 9: Photos showing a typical signal generator pulse output configuration for transient response 
measurements and an oscilloscope display of a pulse and a circuit’s response to it. The signal generator 
display is obtained by selecting the generator’s Graph button as shown. When properly configured, the 
Transient Response application display will be similar to the oscilloscope’s but it can acquire much more 
accurate response waveform data. 



 2-17 1/20/2020 

Quick estimation of Q from the decay 

From your answer to Prelab problem 4 you know that Ne, the number of cycles required for the 
response to decay by a factor of e (to about one third), when multiplied by π should equal the 
system Q. If it is easier to estimate τ, the time required to “e-fold,” rather than count cycles, then 
a little reflection should reveal that 0,eN fτ= ×  so it is also true that 0.Q fπ τ=  Now use the 
TR app display to estimate Q. How does this estimate compare to the frequency response 
estimates? 

Saving the transient response data 

In order to generate uncertainties in the amplitude data, the measurements must be repeated. 
Accomplish this using the TR app’s Sweep Averaging controls. Averaging 5 sweeps should be 
sufficient. Once the data look good, PAUSE the data acquisition and SAVE the data. Make sure 
you save the CH2 data! 

When saving data acquired with the Transient Response application, make sure you save the 
channel you want (CH 2 has the circuit’s ringing response to the pulse, but CH 1 is the default). 

 The data is saved in the Standard CurveFit file format. 

Load the saved data into CurveFit to check that it was saved properly. This data may be fit using 
the FitAnyFunction.nb Mathematica notebook found in the CurveFit folder in your computer’s 
Documents folder. 

Initial ringing amplitude check 

Speed up the TR app’s Horizontal TIME so that only the first couple of cycles of the ringing are 
shown. Reactivate CH1 if necessary and set both channel to the same VOLTS F/S value. Now 
check to see that the initial ringing amplitude is consistent with  (19)’s V0T0ω0. Remember 
that V0 and T0 are the input pulse’s amplitude and width, respectively. 

Before leaving the lab 

Have you checked your data files using CurveFit to ensure that you have the data needed for 
your detailed analysis? 

Have you measured the actual R, L, and C values used in your set-up? 

Quit the TR app and the FR app. Reconfigure the apparatus for frequency response 
measurements (Figure 6 on page 11). 

Turn off the signal generator and oscilloscope. 

Do you have any final questions for your TA or the lab instructor? 
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ANALYSIS AND CONCLUSIONS 

Frequency response data analysis 

Your analysis of the frequency response data should be thoughtful and thorough. Provide a 
quantitative evaluation of how accurately the theory (as represented by equations (10) and (11) 
on page 6) describes the system’s response to a sinusoidal stimulus at various frequencies. 
CurveFit provides fitting functions for both the magnitude and phase of the system’s complex-
valued transfer function vs. frequency, G( f ), where your measured frequency 2/f ω π= .  

Frequency response data is imported to CurveFit using its Data I/O function Load Frequency 
Response Data. A CurveFit dialog box will then open with options to select which aspect of the 
data set should be imported: gain magnitude, phase, or whatever. 

As you saw in your acquired data, your observed G( f ) at high frequencies exhibited behavior 
which conflicts with the simple damped harmonic oscillator theory prediction. However, the 
theory might nevertheless be quite accurate and useful, especially near and below the observed 
resonant frequency. Assuming that this is the case, the theory’s parameters ω0 and Q remain 
appropriate and useful. Your analysis must provide values (with uncertainties) of f0 and Q (or, 
equivalently, γf ), and it should compare the estimates of these parameters which result from 
fitting the magnitude and the phase data.  

Don’t confuse frequencies measured in hertz (such as f0 and γf ) with angular frequencies (such 
as ω0 and γ). Remember where the 2π’s go! 

To reiterate: when fitting the data to the theoretical model, you should perform at least two fits to 
the gain magnitude data and another two fits to the gain phase data: (a) attempt to fit only a 
narrow range of frequencies within a few γ of the resonance, and (b) attempt a fit of the entire 
data set, including the high-frequency response.  

Fits near resonance should use linear scales, but data plots extending far from resonance 
should use log frequency scales and log gain magnitude scales (as in Figure 4 on page 7).  

At what level of accuracy can you claim that the theory describes the behavior of the system, 
especially near resonance? How consistent with each other are the model fits to the amplitude 
and phase data? How about the fits’ f0 and Q values? Thoughtful consideration of the fits’ 
parameter uncertainties and χ 2 values are required to address these questions. Are your 
observed f0 and Q consistent with what you calculate from your measured R, L, and C values? 
Assume the measured L value accurately reflects the inductance in the circuit; what must R and 
C be to account for your observed results? How then does your calculated RL compare to your 
measured DC resistance of the inductor? 
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So what is going on at high frequencies? Don’t forget to look at the phase response as well as the 
amplitude response in this regime. Do you have evidence of the presence of one or more 
additional resonances? How do these resonant frequencies, if any, compare to f0? Is this behavior 
predicted by the theory? Can you come up with any ideas as to how to extend the theory to 
include these observations? 

Finally, don’t forget to illustrate and address the issue raised by the variation in the observed f0 
and Q as the input signal amplitude was increased. Can any linear theory model such an effect? 

Transient response data analysis 

Use the FitAnyFunction.nb notebook found in the CurveFit directory to fit your saved transient 
response data (whose format is a standard CurveFit data file). Carefully follow the instructions in 
the notebook to properly perform the fit. Are the resulting fit parameters f0 and τ consistent with 
your frequency response analysis? Is the fit’s initial amplitude parameter A consistent with your 
input pulse amplitude and width (A≈V0T0ω0)? 

Any comments about the fit residuals and the χ 2 value? What if you fit a subset of the data where 
the amplitudes are smaller? Any ideas as to what causes the pattern in the fit residuals? 

Conclusions 

Provide a brief, thoughtful summary of your findings. 
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PRELAB PROBLEMS 

1. Derive equation (9) for the complex gain G (ω) from the expressions in (8) and the facts that 
( )outV ω = ( ) ( ) ( ) ( ) /C CV Z I I j Cω ω ω ω ω= =  and 0 01/Z j Cω= . 

2. Use equation (10) for ( )| |G ω  to show that 0( )| |G Qω = , but that the maximum value of 
( )| |G ω  is actually given by:  

 2

2

max max 0
1

21
4

( ) ;  where 1
1

| | Q
Q

QG www  = = −
−

 

3. Given: 10mH;  10nF;  50   L C R= = = Ω  
What are ω0, Z0, Q, γ, τ?  What are ( )0 0 2  rad/cyclef ω π=  and ( )2  rad/cyclefγ γ π= ? 
What would RL be if the measured 17Q = ?  
What do f0 and Q become if L is changed to 100 mH? 

4. Use equations (16) to show that during the transient response ring-down the amplitude 
decays to 1 e  of its initial value after Q π  cycles (periods). Assume 2 1Q 2  so that 

0Tω ω≈ . 

5. Provide a brief, verbal description of your experiment procedure to your TA. 
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APPENDIX A:  IMPEDANCE 

A review of some algebra of complex numbers 

Here is a terse review of the elementary mathematics of complex numbers which we will need to 
manipulate frequency-domain signals and impedances.  

Given: ,Z W ∈ ; , ,x y φ ∈y  

The complex number Z may be represented as a vector in 
a plane as shown at right. We then have the following 
Cartesian (real and imaginary parts) and polar coordinate 
(exponential) representations of  Z: 

jZ x j y Z e φ= + =   

[ ]Re Z x≡ ;   [ ]Im Z y≡  

2 2Z x y= + ;  cos sinje jφ φ φ≡ + ;  cosx Z φ= ;  siny Z φ= ;  ( )arctan y xφ =  
2jj e = ;  1 je − = ;  ( )jZ x j y Z e φ π±− = − − =  

Terminology: 

: real part of ; : imaginary part of ; : magnitude of ; : phase of x Z y Z Z Z Zf  

Conjugates, magnitudes, reciprocals: 

[ ] 2* conj ; * * ; 1 1jZ Z x j y Z e Z Z Z Z Z Z Zφ−= ≡ − = = = =  

[ ] ( ) [ ] ( ) [ ] [ ] [ ] [ ]1 1
2 2Re * ; Im * ; Re * Re ; Im * ImjZ Z Z Z Z Z Z Z Z Z= + = − = = −  

2 2

1 1 1 1 1*;
*

jx j y e
Z x j y x y Z ZZ

φ−−  = = = = + +  
 ;     

1 j
j
= −   

Products of two complex numbers: 

Let:   ;Z Z W W
WZ jjZ x j y Z e W x j y W e φφ= + = = + =   

( ) ( )( ); * * *Z W Z W Z W W Z
Z Wj

Z W Z W e x x y y j x y x y Z W Z W
φ φ+

= = − + + =  

;Z W Z W Z W Z W= =  

 

x

y

φ

Z

Z
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Linear functions and time derivatives: 

If F (Z ) is a complex-valued function of its complex argument Z, then we can write: 

( ) ( ) ( )F Z u Z j v Z= +  ,   where u and v return real values for every Z 

If F (Z ) is also linear, then: 

( ) ( ) ( ) ( )F Z F x j y F x j F y= + = +     [Note: F (real x) may be complex-valued] 

Let time ,t∈  and let ( ) ( ) ( ),Z t x t j y t= +  where ( )x t ∈  and ( ) .y t ∈y  Then: 

( ) ( ) [ ( ) ( )] ( )d d d dx t j y t x t j y t Z t
dt dt dt dt

+ = + = ;  Re[ ( )] Re ( )d dZ t Z t
dt dt

 
∴ =  

 
 

so we may exchange the order of time differentiation and taking the real part. This is a most 
important result. 

Complex-valued representation of sinusoids 

We can represent a sinusoidal function of time using complex numbers: 

 
max

max

If: ( ) cos( )

Then: ( ) Re  ;  where:  j t j

y t y t

y t Y e Y y ewf

wf = +

 = = 
 (20) 

 

The complex “amplitude” Y is called a phasor since it determines both the amplitude and phase 
of y(t). If the phase ϕ of Y is greater than 0, then the phase of y(t) “leads” the phase of cosωt; if 

0φ <  the phase “lags” that of cosωt. It will generally be the case that the phasor ( )Y Y ω= , a 
function of the angular frequency. It is not the case, however, that the phasor is a function of 
time t, because all the time dependence of y(t) is captured in the j te ω  term. Since the only 
factors which differentiate various sinusoidal functions all at the same frequency are the 
differences in their phasors, we can simply refer to the functional relationship (20) as 

( ) ( ) ; with ( )  , whereas ( )y t Y y t Yww ↔ ∈ ∈y   (21) 

 

What this implies is that when we consider phasors as specifications of sinusoidal functions of 
time we are using a frequency-domain representation of the functions, that is: we are working in 
the Fourier transform space of functions of time. 
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More generally, a real-valued function of time (not necessarily a sinusoid) may be represented by 
a complex-valued function of frequency by using a Fourier transform and it inverse (the pair 
given here is consistent with our sinusoid representation (20)): 

0

( ) Re ( )

1( ) ( )

j t

j t

x t X e d

X x t e dt

ω

ω

ω ω

ω
π

∞

∞
−

−∞

 
=  

  

=

∫

∫
 (22) 

 

So x(t) and X(ω) in equations (22) are called a Fourier transform pair. Mathematicians have 
extensively studied just what sorts of functions can be represented this way, and what exactly is 
meant by the “=” in (22). We won’t worry about such issues here. 

Time derivatives and phasors 

We can evaluate the frequency representation of the time derivative of a function f (t) as follows: 

( ) ( )
( )

1
20 0 0

1
2 0 0

1
2 0 0 0

( ) Re ( ) ( ) ( )

( ) ( )

( ) ( ( )) Re ( )

j t j t j t

j t j t

j t j t j t

f t F e d F e d F e d

df d dF e d F e d
dt dt dt

df j F e d j F e d j F e d
dt

ω ω ω

ω ω

ω ω ω

ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω ω ω ω

∞ ∞ ∞ ∗ −

∞ ∞ ∗ −

∞ ∞ ∞∗ −

   = = +     
 = + 
 
   = + − =      

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

 

Time differentiation of a function f ( t ) corresponds to multiplying its Fourier transform by jω. 

If: ( ) ( )

Then: ( )

f t F
df j F
dt

ω

ω ω

↔

↔
 (23) 

 

A note about sign conventions 

We have defined our sinusoid representation so that its time variation goes as j te ω . This is the 
convention used in electrical engineering and similar disciplines. With this choice a wave 
propagating in the positive direction along the x-axis would have phase variation ( )j t k xe ω − . This 
is not the usual sign convention chosen by physicists when considering wave propagation, who 
would rather assign a phase variation of ( )i k x te ω− . This choice would imply that the time 
derivative operation of expression (23) would result in a minus sign on jω . An unfortunate 
consequence of this alternate sign convention would be that the normal choice for the impedance 
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representation of a capacitor or inductor (to be presented in the next section) would have the 
wrong sign!  

You may have noticed that this lab write-up uses 1j = − , rather than the mathematicians’ i. 
The reason for this choice is two-fold: (a) it is consistent with the notation used in electronics 
texts, so that it is not confused with the symbol for a current (which is often i in these texts); and 
(b) it emphasizes the electrical engineering sign convention choice for the phase variation with 
time j te ω . 

Extending Ohm’s law 

Consider voltages and currents in some circuit containing an ideal resistor with resistance R. 
Ohm’s law relates the resistor’s time-varying voltage and current ( ) ( )R Rv t R i t= , and, since R is 
a real number, a corresponding relation exists between the phasors in frequency space: 

( ) ( )
Resistor: 

( ) ( )
v t R i t

V R Iω ω
=

 =
 (24) 

 

where the voltage and current phasors in (24) have the same phase because 0R > . This is Ohm’s 
law for a resistance R in the frequency domain. For an inductor or capacitor, on the other hand, 
we can use the relation (23) to obtain: 

( )
( ) ( )

Inductor: 
( ) ( )

d
dtv t L i t

V j L Iω ω ω

=
 =

 (25) 

 

( )
( ) ( )

Capacitor: 
( ) ( )

d
dtC v t i t

j C V Iω ω ω

=
 =

 (26) 

 

The phasor equations in (25) and (26) look like Ohm’s Law except that the factors relating the 
voltage and current are no longer real and are also functions of the frequency. Nevertheless, we 
can generalize Ohm’s law to include these more general phasor relationships by introducing the 
concept of the complex-valued impedance, Z: 

( ) ( ) ( )
1; ;R L C

V Z I

Z R Z j L Z
j C

ω ω ω

ω
ω

=

= = =
 (27) 

 

The reciprocal of the impedance is called the admittance, ( ) 1/ ( )Y Zω ω≡ . 
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Series and parallel combinations and the voltage divider 

Series and parallel circuit connections of impedances follow the same rules as for resistors: 

   

 1 2Z Z Z= +  1 2

1 1 1
Z Z Z
= +

 

Series impedances (and voltages) add. 
Parallel admittances (and currents) add. 

 

Voltage divider: 

  
( ) ( )

2

1 2

2

1 2

out in

out

in

out
out in

in

ZV V
Z Z

ZV
V Z Z

VPhase Phase V Phase V
V

=
+

=
+

 
= − 

    

Z1

Z2

Z2Z1

Z1

Z2

Vin

Vout
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APPENDIX B:  DERIVATION OF THE IMPULSE RESPONSE 

The Dirac delta function 

The Dirac delta function, δ(t), will be used as a theoretical idealization of a very short, impulsive 
excitation of the series RLC resonant system. The defining properties of the delta function are: 

0
If   0,   then  ( ) 0, lim ( ) 0

(0) , If the region  includes the origin
( ) ( )

   0 ,   otherwise

and ( ) is any well-behaved function in .

t

R

t t t

f R
f t t dt

f t R

dd

d

→
≠ = ∴ =


= 


∫  
(28) 

 

So δ(t) must be an infinitely narrow, infinitely high “spike,” or impulse which has a finite, 
nonzero integral. Unfortunately, such a function can’t exist using the ordinary definition of a 
function, but it can be defined rigorously as a special limit of a sequence of ever-narrower 
functions (which the mathematicians call a distribution). 

Integrating the differential equation 

We can use the delta function to represent an idealized impulsive stimulus to the input of the 
resonant system: 

0 0

0 00

( ) ( ) ,  so that:

( 0) 0; lim ( )

in

in in

V t V T t

V t V t dt V T
ε

εε

d

−→ +

=

 ≠ = = 
 ∫

 (29) 

 

where “ 0ε → + ” means that ε approaches 0 through positive values. Integrating equation (13) to 
get rid of the derivative of Vin(t ) and then substituting (29) gives the integro-differential 
equation:  

0 0
1( ) ( ) ( ) ( )

t
d
dtL I t R I t I t dt V T tC d

−∞

′ ′+ + =∫  (30) 

 

where we’ve used the fact that I(t) and its derivatives vanish for 0t < . To proceed further we 
must assume that I(t) is integrable in the ordinary sense, even at 0t = , so that:  

0 0

( ) ( ) ( ) 0 ( )

lim ( ) lim 2 ( ) 0

I t dt I t dt I t dt I t dt

I t dt I

ε ε ε ε

ε ε

ε

εε ε
ε ε

−

−∞ −∞ − −

−→ + → +

= + = +

  = = 
 

∫ ∫ ∫ ∫

∫
 (31) 

 

( )I ε  in (31) is assumed to be some finite average value of  I(t) for tε ε− ≤ ≤ . This would 
certainly be true if I(t) were to remain finite over the infinitesimal time interval of the impulse in 
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Vin(t ), but all that is required is that ( )I t dt∫  over any infinitesimal interval must vanish (unlike 
the case for δ(t)!). As we shall see, both I(t) and ( )d

dt I t   have step-discontinuities at 0t = . 

Given (31), consider (30) in the limit as 0t → + , that is, immediately after the impulse in ( )inV t . 
The right-hand side and the integral on the left-hand side of (30) vanish in this case, so we get a 
relationship between ( )I t  and ( )d

dt I t  at the instant just after the impulse: 

0 0 0
1( ) ( ) ( ) lim ( ) 0

(0 ) (0 ) 0 0

t

t
d
dt

d
dt

L I t R I t I t dt V T tC

L I R I

d
→ +

−∞

 
 ′ ′+ + = =
 
 

+ + + + =

∫   

( ) ( ) ( )0(0 ) (0 ) (0 ) 2 (0 )d
dt I R L I Q I Iω t∴ + = − + = − + = − +  (32) 

 

Integrate (30) again and again consider the limit as 0t → + . Then: 

0 00 0

0 0

1lim ( ) ( ) ( ) lim ( )

(0 ) 0 0

t t t t

t t
L I t R I t dt I t dt dt V T t dtC

L I V T

d
′

→ + → +
−∞ −∞ −∞ −∞

 
 ′ ′ ′′ ′′ ′ ′ ′+ + =
 
 

+ + + =

∫ ∫ ∫ ∫   

0 0 0 0 0 0(0 )I V T L V T Zω∴ + = =  (33) 

 

Equations (32) and (33) are the results that were presented in the initial conditions (17) on page 
8. To get the value for I0 given in (17), assume that 0I x j y= + , and calculate (0 )I +  and 

(0 )d
dt I +  from (14), keeping in mind the result (32): 

( ) ( )0( ) Re exp / Re ( )exp /

(0 )

T TI t I j t t x j y j t t

I x

ω t ω t= − = + −      

∴ + =
  

( ) ( )
( ) ( )

( ) ( ) ( )

( )

0( ) Re exp / Re ( ) exp /

Re ( ) 1 / exp /

(0 ) / / (0 ) / 2 /

       

T

T

T T T

T

T

T

d d d
dt dt dt

d d
dtdt

I t I j t t x j y j t t

x j y j j t t

I x y y x I x x

y x

ω t ω t

ω t ω t

t ω t ω t t ω

ω t

 = − = + −    
= + − −  

∴ + = − + → = − + + = − −

∴ =

  

( )( )0 1 (0 )TI j Iω τ∴ = + +  (34) 
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APPENDIX C:  Q AND OTHER DIMENSIONLESS PARAMETERS 

For the RLC circuit considered in this experiment, we identified the dimensionless parameter Q: 

1 LQ
R C

=  (5) 

 
This is the only combination of a resistance, a capacitance, and an inductance which has no units, 
i.e., is a pure number (of course, functions of Q are also dimensionless, but these are not 
independent of Q). As explained in the text, ω0 and Z0 are scale factors, and setting them to 1 
reveals the scale-free structure of the theory, equations (7) and (8). We repeat this scale-free 
expression of the theory (the dots imply time derivatives): 

 

1( ) ( ) ( ) ( )

1 1 ( ) ( )

y t y t y t f t
Q

j y f
Q

ω ω ω
ω

••• •+ + =

  + − =    

 

It is not possible to choose different units for R, L, and C (while maintaining their actual physical 
behaviors) such that the value of Q defined in (5) changes, as long as the units you use are 
dimensionally correct. So this dimensionless value Q may be considered to be the only true 
“free” parameter which, along with the structure of the equations, determines the essential 
physics of any system described by this theory. Thus, ignoring scale factors may reveal 
similarities in the behaviors of quite distinct physical systems which are nevertheless described 
by a single fundamental, scale-free, theoretical structure. This potential for unification is a 
powerful motivator for theoretical efforts.  

Varying the value of Q would lead to an entire family of systems related by the underlying 
structure of the equations. Systems with different Q values in this family may behave very 
differently, however, even though the structure of the equations remains the same. Engineers can 
tailor their inventions by manipulating the values of dimensionless parameters such as Q by 
making judicious choices of components or other aspects of their designs. 

Here are some other examples of dimensionless parameters in physical theories: 

Γ : The ratio of specific heats P VC CΓ =  of a dilute gas. This number is related to the number 
of internal degrees of freedom a gas molecule has for storing energy. 

M : The Mach number is the ratio of the speed of a fluid flow to the speed of sound in the fluid. 
The physics of fluid flow are very different for M 1 , M ~ 1 and M 1 . 

α: The Fine Structure Constant 2α /  (Gaussian units) 1/137e c= ≈ . This is a fundamental 
constant of nature which is even more important to the behavior of quantum 
electrodynamics than Q is to the behavior of a resonant system. The universe would be 
very different if this number were very different from its observed value. 
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