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Appendix D:
The Wave Vector

In this appendix we briefly address the concept of the wave vector and its relationship to
traveling waves in 2- and 3-dimensional space, but first let us start with a review of 1-
dimensional traveling waves.

1-dimensional traveling wave review

A real-valued, scalar, uniform, harmonic wave with angular frequency w and wavelength A
traveling through a lossless, 1-dimensional medium may be represented by the real part of
the complex function w(x,7):"

v(x,t) = v(0,0) exp(ikx—iwt) (D-1)
where the complex phasor y(0,0) determines the wave’s overall amplitude as well as its

phase ¢, at the origin (x,7) =(0,0). The harmonic function’s wave number k is determined
by the wavelength 4:

k= £27/2 (D-2)

The sign of k determines the wave’s direction of propagation: k£ >0 for a wave traveling to
the right (increasing x). The wave’s instantaneous phase ¢@(x,¢) at any position and time is

o(x,t) = ¢ + (kx—ot) (D-3)

The wave number £ is thus the spatial analog of angular frequency w: with units of
radians/distance, it equals the rate of change of the wave’s phase with position (with time ¢
held constant), i.e.

=—; 0=—-— (D-4)

(note the minus sign in the differential expression for w). If a point, originally at
(x = x,,=0), moves with the wave at velocity v, = w/k, then the wave’s phase at that point
will remain constant:

¢(x0+v¢t, t) = ¢O+k(x0+v¢t)—a)t = ¢, +kx,

The velocity Vy is called the wave’s phase velocity.

" In this appendix we use the physicists’ sign convention for the exponential argument: i(kx — @t), rather than

the electrical engineering convention j(wt — kx) used in General Appendix A and Experiment 14.
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The function y(x,¢) is a solution of the 1-dimensional wave equation

0’ 1 o°
=0 (0-5)
X Vs t

and the function W(x)=e“w(x,t)=w(0,0)exp(ikx) is a solution of the 1-dimensional
Helmholtz equation

d*¥

2

+ kK%Y =0 (D-6)

dx

The functions w(x,7) and W(x) represent harmonic solutions to equations (D-5) and (D-6)
because they have well-defined frequency w and wave number k. Of course, there are an
infinite number of other valid solutions to equations (D-5) and (D-6): the appropriate solution
will depend on a particular problem’s boundary value constraints and might be constructed
from a linear superposition of harmonic solutions with various values for k (or w) using
Fourier analysis.

Waves in 2 and 3 dimensions

To extend the 1-dimensional harmonic wave (x,f) given by (D-1) to a wave in multi-
dimensional space, consider the expression (D-3) for the wave’s phase ¢. Using Cartesian
coordinates so that the position vector 7 =xx+ yy+zz, we could simply add a linear phase
term for each coordinate:

p(r,t) = ¢+ (kx+k,y+k z—wt) = ¢ + (k-7 —wt)

. (D-7)
k = kx+k,y+k .z

Thus the equivalent expression in two or more spatial dimensions for the uniform, harmonic
wave (D-1) becomes

w(7,1) = w(0,0) exp(ik -7 —iwt) (D-8)

where, again, y/((), 0) is a complex phasor which determines the amplitude and phase offset
of w(7,t). The vector k is called the wave vector, the multi-dimensional analog of the wave
number % in (D-1).

From the phase expression (D-7), k is evidently the position gradient of the phase, which
turns out to be a good, general definition of the wave vector:

k = V§(F,0) (D-9)

Equation (D-9) is obviously simply the generalization of the expression for k in (D-4) to
multi-dimensional spaces. If the wave vector k is constant and uniform throughout 3-
dimensional space, then y(7,f) becomes a plane wave: so named because its instantaneous
loci of uniform phase, which by equation (D-9) must be everywhere perpendicular to k, form
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a set of parallel planes; in 2-space the analogous loci comprise the set of lines everywhere
perpendicular to k (see Figure D-1).

Figure D-1: (Left) a transverse plane wave propagating along a surface in the direction
given by its wave vector k. Note that the magnitudes of the wave vector’s components
give the rate of change of the wave’s phase along their respective directions. (Right) a
circular wave propagating outward. A selection of wave vectors is shown; each vector is
perpendicular to the surface of constant phase at its location (in this case, a circle
centered on the source).

Because the wave vector is the position gradient of the phase of a wave, its dot product with
a unit vector gives the rate of change of the phase along that unit vector’s direction (in
radians/length). This is illustrated in the left-hand graphic in Figure D-1 for the two unit
vectors x and p. Generally, the wave vector varies from place to place, as shown in the
right-hand graphic in Figure D-1; we then refer to the vector field /g(F). Only if the wave
vector k is uniform throughout space do we get a plane wave, equation (D-8).

The phase velocity of a plane wave (equation (D-8), with uniform lg) is parallel to k and is
again given by v, = w/k

- @ r
v, = ;k (D-10)
The multi-dimensional wave equation satisfied by w(7,7) is (we assume the medium is
isotropic)
0’ 0’ 0’ 10°
o =0
ox oy 0z vy ot
or (D-11)
1 &’y
Viy — — =0
v v; ot

The associated Helmholtz equation is, naturally,
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V¥ + kY =0 (D-12)

As for the 1-D case, general solutions of either of these differential equations may be
constructed from Fourier sums or integrals of plane-wave solutions with various values of k.
Such constructions are appropriate if the boundary conditions are planar (3-D case) or
defined along straight lines (2-D case). Such boundary value problems over finite volumes
will restrict the choices of wave vectors k which will satisfy them. The acceptable values of
k become a set of eigenvalues for a particular boundary value problem, and the associated
functions v (7,t) may be used to construct the system’s normal modes.

Relation to standing waves in a cavity

...........................................

Figure D-2: Two views of a standing wave mode in a rectangular resonant cavity with
“free” (Neumann) boundary conditions. The nodal lines of the mode are shown (dashed)
in the left graphic; the arrows in each graphic represent x and J unit vectors. In this
example such solutions may be constructed by adding a symmetric set of plane waves all
with the same wave number | | as described in the text and shown in Figure D-3.

The boundary conditions for a resonant cavity will usually demand that the Helmholtz
equation’s wave solutions form standing waves rather than a single travelling wave with a
definite direction of propagation; Figure D-2 provides an example of a standing wave
solution in a rectangular cavity such as that used in Experiment 15.

In the case of the rectangular cavity shown in Figure D-2, standing waves with the proper
symmetries and boundary values may be synthesized by
adding pairs of oppositely-directed travelling waves, all with a
common wave number k =|k |, as shown in Figure D-3 at
right. For the solution shown in Figure D-2, each plane wave
must have |k, |=27/l, and |k, |=7z/l,, where I, and [, are
the lengths of the horizontal and vertical sides of the cavity, .

. .. Figure D-3: Wave vectors of
respectively. Additionally, all four plane waves must have the four traveling waves
phase ¢=0 at the lower-left corner of the cavity for the whose sum provides the

resulting standing wave to satisfy the cavity’s boundary  standing wave solution
shown in Figure D-2.
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conditions. The Experiment 15 notes cover this situation more thoroughly.

The symmetries of a particular boundary value problem involving the wave equation or its
related Helmholtz equation may point to a different choice for the set of elementary solutions
w(7,t) of the differential equation, rather than using plane waves. For example, a 2-
dimensional system with circular symmetry is usually solved in the most straightforward
manner by choosing circularly-symmetric solutions whose radial variation is given by an
appropriate member of the family of Bessel and related functions. For any such function
representing a travelling wave with well-defined frequency w (a harmonic function),
however, the wave vector k at any position 7 is still given by the gradient of the function’s
phase with 7 (equation (D-9) and the right-hand graphic in Figure D-1).

Circularly-symmetric cavities resonate with standing waves displaying radial + circular nodal
patterns as shown in Figure D-4. Unlike the rectangular cavity solutions, however, these
patterns cannot be generated from a finite sum of plane waves. The most straightforward
analytic (closed-form) expression for the standing wave solution is as the product of a
function for the radial variation (a Bessel function) and the azimuthal variation (a sinusoid).
For the standing wave shown in Figure D-4, the solution of equation (D-12) turns out to be:

Y(r,0) = J,(kr) cos(470) (D-13)

where J, is the 2"_order Bessel function of the first kind, and the wave number k is such that
J,(ka) is the second zero of J, with a = the circular cavity’s radius, or k ~8.41724/a.

Figure D-4: Views of a particular standing wave mode in a circular, 2-D membrane with a
“fixed” (Dirichlet) boundary condition, such as a drumhead. The nodal lines of the mode
are shown (dashed) in the left graphic. The right-hand images show very exaggerated
surface displacements of the membrane, seen from above and below.
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