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Appendix D:  
The Wave Vector 
 
In this appendix we briefly address the concept of the wave vector and its relationship to 
traveling waves in 2- and 3-dimensional space, but first let us start with a review of 1-
dimensional traveling waves. 

1-dimensional traveling wave review 

A real-valued, scalar, uniform, harmonic wave with angular frequency ω and wavelength λ 
traveling through a lossless, 1-dimensional medium may be represented by the real part of 
the complex function ( , ) :x tψ 1  

 ( , ) (0,0) exp( )x t ik x i tψ ψ ω= −   (D-1) 

where the complex phasor (0,0)ψ  determines the wave’s overall amplitude as well as its 
phase 0φ  at the origin ( , ) (0,0).x t =  The harmonic function’s wave number k is determined 
by the wavelength λ:  

 2k π λ= ±   (D-2) 

The sign of k determines the wave’s direction of propagation: 0k >  for a wave traveling to 
the right (increasing x). The wave’s instantaneous phase ( , )x tφ  at any position and time is  

 0( , ) ( )x t k x tφ φ ω= + −   (D-3) 

The wave number k is thus the spatial analog of angular frequency ω: with units of 
radians/distance, it equals the rate of change of the wave’s phase with position (with time t 
held constant), i.e. 

 ;k
x t
φ φω∂ ∂

= = −
∂ ∂

  (D-4) 

(note the minus sign in the differential expression for ω). If a point, originally at 
0( , 0),x x t= =  moves with the wave at velocity ,v kφ ω=  then the wave’s phase at that point 

will remain constant: 

 0 0 0 0 0( , ) ( )x v t t k x v t t k xφ φφ φ ω φ+ = + + − = +   

The velocity vφ  is called the wave’s phase velocity. 

                                                 
1 In this appendix we use the physicists’ sign convention for the exponential argument: ( ),i k x tω−  rather than 
the electrical engineering convention ( )j t k xω −  used in General Appendix A and Experiment 14. 
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The function ( , )x tψ  is a solution of the 1-dimensional wave equation 
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ψ ψ∂ ∂
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∂ ∂
  (D-5) 

and the function ( ) ( , ) (0,0)exp( )i tx e x t ikxωψ ψΨ = =  is a solution of the 1-dimensional 
Helmholtz equation 
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+ Ψ =   (D-6) 

The functions ( , )x tψ  and ( )xΨ  represent harmonic solutions to equations (D-5) and (D-6) 
because they have well-defined frequency ω and wave number k. Of course, there are an 
infinite number of other valid solutions to equations (D-5) and (D-6): the appropriate solution 
will depend on a particular problem’s boundary value constraints and might be constructed 
from a linear superposition of harmonic solutions with various values for k (or ω) using 
Fourier analysis. 

Waves in 2 and 3 dimensions 

To extend the 1-dimensional harmonic wave ( , )x tψ  given by (D-1) to a wave in multi-
dimensional space, consider the expression (D-3) for the wave’s phase ϕ. Using Cartesian 
coordinates so that the position vector ˆ ˆ ˆ,r xx y y zz= + +

  we could simply add a linear phase 
term for each coordinate: 

 0 0( , ) ( ) ( )
ˆ ˆ ˆ

x y z

x y z

r t k x k y k z t k r t

k k x k y k z

φ φ ω φ ω= + + + − = + ⋅ −

≡ + +



 

   (D-7) 

Thus the equivalent expression in two or more spatial dimensions for the uniform, harmonic 
wave (D-1) becomes 

 ( , ) (0,0) exp( )r t ik r i tψ ψ ω= ⋅ −


    (D-8) 

where, again, (0,0)ψ


 is a complex phasor which determines the amplitude and phase offset 
of ( , ).r tψ   The vector k



 is called the wave vector, the multi-dimensional analog of the wave 
number k in (D-1). 

From the phase expression (D-7), k


 is evidently the position gradient of the phase, which 
turns out to be a good, general definition of the wave vector: 

 ( , )k r tφ= ∇




  (D-9) 

Equation (D-9) is obviously simply the generalization of the expression for k in (D-4) to 
multi-dimensional spaces. If the wave vector k



 is constant and uniform throughout 3-
dimensional space, then ( , )r tψ   becomes a plane wave: so named because its instantaneous 
loci of uniform phase, which by equation (D-9) must be everywhere perpendicular to ,k



 form 
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a set of parallel planes; in 2-space the analogous loci comprise the set of lines everywhere 
perpendicular to k



 (see Figure D-1).  

     

Figure D-1: (Left) a transverse plane wave propagating along a surface in the direction 
given by its wave vector k .



 Note that the magnitudes of the wave vector’s components 
give the rate of change of the wave’s phase along their respective directions. (Right) a 
circular wave propagating outward. A selection of wave vectors is shown; each vector is 
perpendicular to the surface of constant phase at its location (in this case, a circle 
centered on the source). 

Because the wave vector is the position gradient of the phase of a wave, its dot product with 
a unit vector gives the rate of change of the phase along that unit vector’s direction (in 
radians/length). This is illustrated in the left-hand graphic in Figure D-1 for the two unit 
vectors x̂  and ˆ.y  Generally, the wave vector varies from place to place, as shown in the 
right-hand graphic in Figure D-1; we then refer to the vector field ( ).k r



  Only if the wave 
vector k



 is uniform throughout space do we get a plane wave, equation (D-8). 

The phase velocity of a plane wave (equation (D-8), with uniform )k


 is parallel to k


 and is 
again given by v kφ ω=  

 ˆv k
kφ
ω

=
   (D-10) 

The multi-dimensional wave equation satisfied by ( , )r tψ   is (we assume the medium is 
isotropic) 
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  (D-11) 

The associated Helmholtz equation is, naturally, 

k
ˆxk x

ˆyk y
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 2 2 0k∇ Ψ + Ψ =   (D-12) 

As for the 1-D case, general solutions of either of these differential equations may be 
constructed from Fourier sums or integrals of plane-wave solutions with various values of .k



 
Such constructions are appropriate if the boundary conditions are planar (3-D case) or 
defined along straight lines (2-D case). Such boundary value problems over finite volumes 
will restrict the choices of wave vectors k



 which will satisfy them. The acceptable values of 
k


 become a set of eigenvalues for a particular boundary value problem, and the associated 
functions ( , )

k
r tψ 

  may be used to construct the system’s normal modes. 

Relation to standing waves in a cavity 

      
Figure D-2: Two views of a standing wave mode in a rectangular resonant cavity with 
“free” (Neumann) boundary conditions. The nodal lines of the mode are shown (dashed) 
in the left graphic; the arrows in each graphic represent x̂  and ŷ  unit vectors. In this 
example such solutions may be constructed by adding a symmetric set of plane waves all 
with the same wave number | |k



 as described in the text and shown in Figure D-3. 

The boundary conditions for a resonant cavity will usually demand that the Helmholtz 
equation’s wave solutions form standing waves rather than a single travelling wave with a 
definite direction of propagation; Figure D-2 provides an example of a standing wave 
solution in a rectangular cavity such as that used in Experiment 15. 

In the case of the rectangular cavity shown in Figure D-2, standing waves with the proper 
symmetries and boundary values may be synthesized by 
adding pairs of oppositely-directed travelling waves, all with a 
common wave number | |,k k=



 as shown in Figure D-3 at 
right. For the solution shown in Figure D-2, each plane wave 
must have | | 2x xk lπ=  and | | ,y yk lπ=  where xl  and yl  are 
the lengths of the horizontal and vertical sides of the cavity, 
respectively. Additionally, all four plane waves must have 
phase 0φ =  at the lower-left corner of the cavity for the 
resulting standing wave to satisfy the cavity’s boundary 

 
Figure D-3: Wave vectors of 
the four traveling waves 
whose sum provides the 
standing wave solution 
shown in Figure D-2. 
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conditions. The Experiment 15 notes cover this situation more thoroughly. 

The symmetries of a particular boundary value problem involving the wave equation or its 
related Helmholtz equation may point to a different choice for the set of elementary solutions 

( , )r tψ   of the differential equation, rather than using plane waves. For example, a 2-
dimensional system with circular symmetry is usually solved in the most straightforward 
manner by choosing circularly-symmetric solutions whose radial variation is given by an 
appropriate member of the family of Bessel and related functions. For any such function 
representing a travelling wave with well-defined frequency ω (a harmonic function), 
however, the wave vector k



 at any position r  is still given by the gradient of the function’s 
phase with r  (equation (D-9) and the right-hand graphic in Figure D-1). 

Circularly-symmetric cavities resonate with standing waves displaying radial + circular nodal 
patterns as shown in Figure D-4. Unlike the rectangular cavity solutions, however, these 
patterns cannot be generated from a finite sum of plane waves. The most straightforward 
analytic (closed-form) expression for the standing wave solution is as the product of a 
function for the radial variation (a Bessel function) and the azimuthal variation (a sinusoid). 
For the standing wave shown in Figure D-4, the solution of equation (D-12) turns out to be: 

 2( , ) ( ) cos (4 )r J krθ πθΨ =   (D-13) 

where 2J  is the 2nd-order Bessel function of the first kind, and the wave number k is such that 
2 ( )J ka  is the second zero of 2J  with a = the circular cavity’s radius, or 8.41724 .k a≈    

      
Figure D-4: Views of a particular standing wave mode in a circular, 2-D membrane with a 
“fixed” (Dirichlet) boundary condition, such as a drumhead. The nodal lines of the mode 
are shown (dashed) in the left graphic. The right-hand images show very exaggerated 
surface displacements of the membrane, seen from above and below. 
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