
General Appendix A
Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

1.  Waves Propagating on a Transmission Line

General

A transmission line  is  a  1-dimensional  medium which  can  support  the  propagation  of  waves  in  either  direction  along  its
length.  Transmission lines  may be used to  model the  behaviors  of  many physical  systems, including organ pipes,  optical
fibers,  and  thin,  stretched,  elastic  strings  in  addition  to  the  typical  electrical  examples  of  coaxial  cables  and  microwave
waveguides. A linear medium allows the construction of complicated wave solutions by superposing several simple waves
such as sinusoids at various frequencies — a linear transmission line supports the simultaneous propagation of many waves
with various frequencies and in either direction along it. The instantaneous displacement at time t for any point on the line
is  simply  the  sum of  the  displacements  due  to  all  the  various  waves  at  that  point  and  at  that  time.  This  discussion  will
assume that the transmission line is linear.

We shall use the phasor notation described in Experiment 2, Appendix A, to express the solutions of our transmission line
problem (a frequency representation). A sinusoid with angular frequency w and wave number k  propagating on the line in
the +z direction varies with position and time as

(1)
az, t = Re A0 e-a z e jw t - k z

or : az, t = Re Az e jw t , where : Az = A0 e- j k + a z

As in Experiment 2, we use the engineering phase convention (to convert to the physics phase convention, simply replace
the  imaginary  constant  j  with  -i  ).  The  phasor  Az  describes  the  variation  in  phase  and  amplitude  of  the  wave  with
distance along its direction of propagation. The phase velocity of the wave is given by vf = w k  and is determined by the

material  characteristics  of  the  transmission line  and  the  physical  nature  of  the  wave  propagating  along it.  Generally,  this
velocity is a function of the frequency w (or, equivalently, the wave number k). Transmission lines with vf  independent of

frequency are called nondispersive.

The exponential  term e-a z  in  (1)  represents  the  attenuation of  the  wave due to  losses  in  the  transmission line.  The  (real,
nonnegative) loss parameter a has units of length-1; the distance l = 1  2 a is sometimes called the attenuation length
of  the  transmission  line,  because  the  intensity  of  the  wave  (which  goes  as   Az2)  decreases  by  a  factor  of  e-1  for  each
additional distance of l along the line.  If the line is lossless (or ideal), then a = 0. In general, a varies with frequency (or
k),  usually  increasing  at  higher  frequencies.   It  is  often  more  convenient  to  define  an  alternative,  dimensionless  loss
parameter d = a k so that

(2)Az = A0 e- j k 1- j d z

with both kw  and dw  being real,  nonnegative  functions of  frequency.  It  may turn  out  that  d  is  a  more slowly  varying
function of k  (or w) than is a. In the discussion that follows we assume that d is generally small and is only weakly depen-
dent on k. Of course, for an ideal transmission line d = 0. The loss parameter d is related to the so-called loss tangent of a
transmission medium, and, as we shall see later on, the quality factor Q of a cavity resonator constructed from the transmis-
sion line is often given by Q = 1  2 d.
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Propagator Notation

The exponential term in equation (2) tells how the phasor of a wave at some position on a transmission line is related to its
phasor at a different position. The distance parameter z increases in the same direction as the wave propagates. It is conve-
nient to define the propagation operator, or propagator, Pz as this exponential term:

(3)Pz ª e- j k 1- j d z

(4)Ax + d = P≤ d  Ax
Choose  the  positive  sign  in  the  propagator’s  argument  if  you  are  propagating  the  phasor  in  the  direction  of  the  wave
propagation and the minus sign for transforming a phasor backward (opposite to the wave’s direction). Some properties of
the propagator (all easily derivable from equation (3)):

(5)

P0 = 1

Pd1 Pd2 =Pd1 + d2
P-d1 = 1 Pd1

One important note about (4) and (5): it is assumed that k  and d are fixed at known values for all such expressions. If there
are waves with different frequencies being included in a single expression, then one must use a notation such as Pd;w or
write out the exponential term explicitly.

Characteristic Impedance

For an electrical  transmission line comprised of two conductors  (such as  a  coaxial  cable or  the lumped-parameter line  of
Experiment 14), we shall consider the amplitude phasor Az  to represent the voltage difference between the two conduc-
tors at position z due to the propagation of a wave, so that Az = V z. The current flows in the two conductors are equal
and opposite, and the direction of the current flow in the more positive conductor is the same as the direction of the wave’s
propagation.   V z  is  proportional to the current phasor Iz;  this proportion defines the transmission line’s characteristic
impedance Z0  (6). The geometry and materials of the line determine the value of Z0, just as they do the phase velocity vf

and the loss parameter d.

(6)

For a single wave with frequencyw :

V z  Iz ª Z0w
Pz =

1

2
Re V z I z* =

1

2
V z2 Re Z0w

Z0 w2

A wave transmits power along the line in its direction of propagation. This power flow is given by Pz  in the second of
equations (6). The characteristic impedance Z0 is generally a function of frequency, as indicated. For the line to represent a
realizable physical  system, Z0  must have a nonnegative real part.  If Z0w  is imaginary, then V z  and Iz  are 90° out of
phase, and a wave cannot propagate along the line at that frequency (the frequency is beyond the cutoff frequency for the
line). For the discussion that follows, we assume that Z0 is real and positive, which is a very good approximation for nearly
ideal transmission lines (d` 1) in the frequency range where waves can propagate. Note that a wave has an energy density
(energy per unit length) which is proportional to its squared amplitude; the power Pz is the flow of this energy across the
point  z.  The  wave's  energy  density  propagates  along  the  transmission  line  at  the  group  velocity:  vG = d w d k.  For  a
dispersive transmisssion medium it is generally true that vG ∫ vf.
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Now consider the case of two waves with the same frequency w propagating in opposite directions on a transmission line at
a position x,  the right-going wave with voltage phasor ax and the left-going wave with voltage phasor bx  at that posi-
tion. The resulting voltage phasor at x is given by the sum of these two wave voltages, V x = ax + bx. The currents due
to  the  two  waves  flow in  opposite  directions,  so  that  the  total  current  at  x  is  given  by  the  difference  in  the  two  waves’
currents. Each wave current is related to its wave voltage by the relation in (6), so the voltage and current at a point on the
line are given by

(7)

For right-going wave ax and left-going wave bx :

V x = ax + bx
Ix = ax Z0 - bx Z0 = ax - bx Z0

Note that in this case (two oppositely propagating waves), the voltage and current phasors at a point are not simply related
by Z0, so that V x ∫ Z0 Ix.

Reflection at a Termination

The  wave  ax  propagates  to  the  right  on  a  line  with  real,  nonnegative  characteristic  impedance  Z0  and  encounters  a
termination of  the  line  at  position  x0.  At  this  point  the  line  is  terminated by  an  impedance Z,  as  shown in  figure  1.  The
voltage across Z  and the current through it  are V x0 and Ix0,  respectively.  Ohm’s law requires that V x0 = Z Ix0,  but
the voltage and current due to the wave are ax0 and ax0 Z0. If Z ∫ Z0, then the boundary condition on the voltage and
current at x0 requires that a wave bx propagate away from the termination; then (7) may be applied to satisfy the relation-
ship between V x0 and Ix0 imposed by the impedance Z.

Z0 Z

a

b

V

I

Z0 Z

a

b

V

I

Figure 1. Wave reflection at the termination of a transmission line.

If we assume that bx0 = G ax0, then for V x0 = Z Ix0 to be satisfied, we find (using (7)) that the reflection coefficient
G must be given by the expression in equation (8). Also listed with this equation are some commonly encountered values
for Z and the corresponding values of G.

(8)G =
Z - Z0

Z + Z0

Short : Z = 0 Ø G = -1

Open : Z =¶ Ø G = 1

Terminated : Z = Z0 Ø G = 0
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Next consider a termination at the point x = 0 which contains a voltage source VS, used to inject a wave cx onto a semi-
infinite transmission line (figure 2a). The source impedance is Z  and the line characteristic impedance is Z0, as shown. First
assume that there is no wave approaching the termination from the right, so that the only wave on the line is cx, emitted
from the  termination  (because  of  its  embedded  voltage  source).  As  far  as  the  source  is  concerned,  the  transmission  line
looks like a resistor equal to Z0. A voltage divider is formed by this resistance and the source impedance Z, so the voltage
across the transmission line is

(9)c0 = Z0

Z + Z0

VS =
1 - G

2
VS

VS

Z
c

V

I

Z0VS

Z
c

V

I

Z0

Figure 2a. A termination which includes a source.

where we’ve also used equation (8) to express Z  in terms of the reflection coefficient G. In figure 2a, c0 = V  because cx
is  the  only  wave  present  on  the  line.  Figure  2b  includes  an  incoming  wave  bx.  The  outgoing  wave  ax  includes  the
reflection of b0  from the termination impedance Z  in addition to the source contribution c.  The solution is easily found
(because the circuit is linear) and is given in (10).

b

VS

Z
c

V

I

Z0

a
b

VS

Z
c

V

I

Z0

a

(10)

c =
1 - G

2
VS ; a0 = c + G b0

V = a0 + b0 = c + G + 1 b0 ; I =
a 0 - b 0

Z0

=
c + G - 1 b0

Z0

Figure 2b. A termination which includes a source and an incoming wave.

A – 4



2.  1-D Cavity Resonator

General Solution

A finite segment of transmission line terminated at  both ends forms a 1-dimensional cavity for waves propagating on the
line.  Any  losses  in  the  cavity,  either  due  to  a  nonzero  loss  parameter  d  or  a  reflection  coefficient  G  at  either  end  with
G < 1 would imply that the power in a wave in the cavity would eventually dissipate. If the termination at one end of the

line includes a source, then a wave c may be injected at that end, driving waves in the cavity at the frequency of the source.
This arrangement is shown in figure 3 for a line of unit length driven by a source in the left-hand termination (where we
take the position parameter x = 0).

b

Γ0

c

Z0

a

Γ1

x = 0 x = 1

b

Γ0

c

Z0

a

Γ1

x = 0 x = 1

Figure 3. A unit-length, driven, 1-D cavity.

To solve this system, we use the propagator and terminator equations to connect the wave amplitudes ax and bx:

(11)

a0 = c + G0 b0 ; a1 =P1 a0
b1 = G1 a1 ; b0 =P1 b1

ax =Px a0 ; bx =P1 - x b1 =P-x b0
\ a0 = c + G0 P1 G1 P1 a0 = c + G0 G1 P2 a0

a0 = c 1 - G0 G1 P 2-1

(12)
ax
c

=
Px

1 - G0 G1 P2 ;
bx
c

=
G1 P2 - x

1 - G0 G1 P2
The total amplitude of the cavity oscillation (voltage for the electrical transmission line), V x = ax + bx:

(13)

V x
c

=
ax + bx

c
=

Px + G1 P2 - x
1 - G0 G1 P2 =

Px - 1 + G1 P1 - x
P-1 - G0 G1 P1

V x
V 0 =

P x + G1 P 2 - x
1 + G1 P2 =

Px - 1 + G1 P1 - x
P-1 + G1 P1

The  final  expressions  in  (13)  were  obtained  by  multiplying  through  by  P-1 P-1;  their  symmetry  will  make  the
expressions in the next  section easy to derive.  Note also that  V x V 0  does not  depend on G0,  because using V 0  as  a
reference effectively establishes a perfect short (G0 = -1) at the source end, with c = V 0. You can confirm this by compar-
ing the expression for V x V 0 to that for V x c with G0 = -1.
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Shorted or Open Termination at the Right End - Resonance

Consider the case where the termination opposite  the driven end is a  perfect short  (G1 = -1) or  a  perfect open (G1 = +1).
The propagator Pz is an exponential function (equation (3)), so that

(14)
P-z + Pz = 2 cos k 1 - j d z

P-z - Pz = 2 j sin k 1 - j d z
Substituting (14) into the expression (13) for V x V 0 with G1 = ≤1 gives

(15)G1 = -1 short :
V x
V 0 =

sin k 1 - j d 1 - x
sin k 1 - j d

(16)G1 = +1 open :
V x
V 0 =

cos k 1 - j d 1 - x
cos k 1 - j d

If d is small, then for k = n p 2 (n = 1, 2, ... ) the denominator of either (15) or (16) becomes small ( ~ j k d, equation (16)
for n odd, (15) for even n); while the numerators will be ~1 depending on the position x. For the other parity of n (odd in
(15), even in (16)), however, the denominator is ~1. This means that both the shorted and open lines will exhibit multiple
resonances, each line having adjacent resonances spaced by D k º p. Figure 4 shows an example of the first few resonances
for the open termination line (equation (16)).

0 p 2 p 3 p 4 p 5 p
-180

-90

0

90

180

k

f
V 1
V 0

Figure 4. Typical gain and phase response of a unit-length, 1-D cavity, showing the first few
evenly-spaced resonances (log scale).
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The  quality  factor  Q  of  a  resonator  is  given  by  Q = energy stored  energy lost  radian of phase in time,  or,  since
w = df dt and vf = w k,

(17)Q =
E

dE df
=

w E

dE dt
=

vf k E

dE dt

(18)Ea + Eb = E =  dE = 
0

1 ∑ E

∑ x
dx = 

0

1 Px
vG

dx =
1

vG


0

1

Pax + Pbx dx

where the integral in (18) is over the volume of the cavity (figure 3), and the power Pax + Pbx is the sum of the powers
in the two oppositely-directed traveling waves a and b in the cavity. Note also that the energy density in a wave is related
to its  power  by  the  group velocity  and  not  the  phase  velocity:  ∑E ∑ x = Px vG.  The  energy  dissipated  in  the  cavity  is
being  supplied  by  the  power  source  at  x = 0,  so  in  equation  (17)  dE dt = Re V 0 I0* 2 = Pa0 - Pb0.  The  wave
power is given by the formula in (6), where the wave’s voltage V x is its amplitude, so this power is,  of course, propor-
tional to the square of the magnitude of the wave amplitude, e.g. Pax ∂ ax 2. The wave b is just the lossless reflection
of wave a at the right end of the cavity, after which it passes through the cavity again. Clearly, as far as the attenuation of
the waves due to losses is concerned, this situation is equivalent to a single wave traveling through an identical transmis-
sion  line  twice  as  long  as  the  cavity,  with  an  amplitude  attenuation  as  it  travels  of  e-a x = e-k d x;  the  squared  amplitude
therefore  decays  as  e-2 a x = e-2 k d x = Pax Pa0.  This  also  implies  that  Pb0 = Pa2,  since  we  assume  that  G1 = 1.
Equation (17) becomes

Q =
vf k E

dE dt
=

vf

vG

k

Pa0 - Pb0 
0

2

Pax dx =
vf

vG

k

1 - Pa2 Pa0 
0

2 Pa x
Pa0 dx

(19)\ Q =
vf

vG

k

1 - e-4 k d


0

2

e-2 k d x dx =
1

2 d

vf

vG

If the transmission medium is nondispersive, then vG = vf and Q = 1  2 d, as mentioned previously.

Approximate Solutions for Small d

Consider the shorted- and open-end solutions (15) and (16). The functions can be expanded using the following identities:

sin A - j B = cosh B sin A - j sinh B cos A º sin A - j B cos A, B` 1

cos A - j B = cosh B cos A + j sinh B sin A º cos A + j B sin A, B` 1

The approximations in the above equations are to first order in B. If d is small, then we can substitute these approximations
in the numerators and denominators of equations (15) and (16),  which gives the following approximate expressions,  with
numerators and denominators each accurate for k d` 1:

(20)G1 = -1 short :
V x
V 0 º

k d 1 - x cosk 1 - x + j sink 1 - x
k d cos k + j sin k

, k d` 1

(21)G1 = +1 open :
V x
V 0 º

cos k 1 - x + j k d 1 - x sin k 1 - x
cos k + j k d sin k

, k d` 1
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These  expressions  can  be  simplified  considerably  at  their  respective  resonant  frequencies  —  kn = n p  for  (20),
kn = n - 1 2 p for (21), n a positive integer — resulting in a single expression for V x, as long as the appropriate resonant
value for kn is used, as shown in equation (22) and figure 5. The relative error in (22) is of order kn d2.

(22)At resonance :
V x
V 0 º 1 - x cos kn x - j

1

kn d
sin kn x, kn d` 1

kn =  n p,
n - 1 2 p,

if G1 = -1 short
if G1 = +1 open , n a positive integer

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

x

V x
V 0

d  0.03; k  2 p; shorted termination

Figure 5.  Typical  complex response vs.  position of  a  unit-length,  1-D cavity  at  its  second
resonance. Imaginary (solid) and real (dashed) parts are plotted.  

So at resonance the quadrature-phase part of the response phasor V x varies as the sine of x, with amplitude V 0  kn d.
The in-phase  amplitude decreases from V 0  to 0 at the far end of the line (x = 1). If kn d` 1, then the quadrature phase
component dominates the  phasor  amplitude,  so  the  overall  amplitude varies  as  sin x,  to  an  accuracy  of   ~ kn d2,  except
near the nodes (0’s of the quadrature phase part), where the phasor amplitude is 1 - x V 0.
Consider  now the response at  x = 1 of  the  open-termination resonator,  equation (21),  which we choose because  the  open
end of the transmission line is always an anti-node of the response at resonance.

V 1
V 0 º

1

cos k + j k d sin k
, k d` 1

(23)
V 1
V 0 º

1

1 - k d cos k + k d  cos k + j sin k =
1

1 - k d cos k + k d e j k
= e- j k

1

k d + e- j k1 - k d cos k

The leading exp - j k term in (23) is just the phase delay due to the wave propagation down the line from x = 0 to x = 1.
The second term in the expression should capture the rapid changes in amplitude and phase of the response near resonance;
at resonance cos k = 0, and the magnitude of the response is 1  k d,  as in equation (22) for x = 1. To proceed further we
wish  to  simplify  the  model  of  the  resonant  response  in  (23)  as  a  function  of  k  for  values  near  a  resonant  frequency
kn = n - 1 2 p.  We  define  D k = k - kn , D k ` 1  and  expand  the  expression  about  kn  to  get  rid  of  the  transcendental
functions, discarding terms of order D k2 and D k d or higher:

e- j k1 - k d cos k º e- j kn+D k1 - kn d cos kn + D k º j D k , D k ` 1 and kn = n - 1 2 p
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(24)\
V 1
V 0 º j -1n

1

kn d + j D k
; k d` 1, D k = k - kn ` 1 open-termination resonator

where in (24) the overall phase term exp - j k in (23) has been replaced by exp - j kn = j -1n. The squared magnitude
of  the  response  (24)  is  called  a  Lorentzian  response  and  is  typical  of  many resonant  systems,  including  the  natural  line
shapes of emission lines  due to electron transitions  in excited atoms. Equations (25) and (26)  provide the magnitude and
phase of the Lorentzian:

with : kn = n - 1 2 p, open termination, D k = k - kn

(25)
V 1
V 0

2

º
1

D k2 + kn d2

(26)arg
V 1
V 0 º - kn + tan-1

D k

kn d
ª
p

2
-1n - tan-1

D k

kn d

When D k kn = ≤d,  the response magnitude (25) is half  its  maximum value of 1kn d2,  and the arctangent in (26) has a

value of  ≤ p 4.  These  are  consistent  with  a  resonant  response with  Q = 1  2 d,  as  was found previously.   Incidentally,
the ‘ª’ symbol in (26) means congruence modulo 2p, wrapping the phase into the branch -p < f § p, as in figure 4.

The Lorentzian  response  described  by  equations  (25)  and  (26)  are  easily  extended  to  apply  to  V x V 0  generally  for  a
resonance of either the shorted or open lines by using (22):

with : kn =  n p,
n - 1 2 p,

if G1 = -1 short
if G1 = +1 open , n a positive integer, D k = k - kn

(27)
V x
V 0

2

º
sin 2 kn x

D k2 + kn d2

(28)arg
V x
V 0 º - arg  j sin kn x + tan-1

D k

kn d

3.  Lossless Cavities with Partial Reflections at the Boundaries

b

Γ0

c

Z0

a

Γ1

x = 0 x = 1

d

Figure 6. A unit-length, driven, 1-D cavity with lossy terminations.

Now consider  the  case  where  the  transmission  medium is  lossless,  but  the  terminations  have   G < 1.  The  situation  is
depicted in figure 6. For example, a Fabry-Perot optical cavity may have identical end mirrors which reflect nearly all  of
the incident light, with but a small fraction transmitted through. Another example would be a section of lossless transmis-
sion line whose characteristic impedance Z0 differs substantially from that of the media interfaced to either end. In particu-
lar,  we  will  be  interested  in  not  only  how  the  wave  amplitude within  the  cavity  varies  with  frequency,  but  also  the  fre-
quency variation of the power transmitted through the cavity (injected at one end and absorbed at the other).

A wave c is injected at the left end of the cavity; the wave at the right end is partially reflected, but a portion d is absorbed
by the terminator at that end. The two end termination reflection coefficients G0 d 1 and G1 d 1, i.e. just a little less
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than  1.  The  propagator  equations  representing  the  relationships  among  the  various  quantities  are  still  given  by  (12),
repeated below as equation (29).

(29)
ax
c

=
Px

1 - G0 G1 P2 ;
bx
c

=
G1 P2 - x

1 - G0 G1 P2
For a lossless medium the propagator is particularly simple:  Pz = e- j k z; thus its only effect is to shift the wave’s phase,
and Pz = 1 for all z. 

For the sake of argument, assume that the end reflection coefficients are nearly perfect shorts, so that each  G = -1 + e and
for some small complex number e: e ` 1. Using the equations (29) the power absorbed by the right-hand termination in
figure 6 is proportional to  d 2 = a1 2 - b1 2 = 1 - G1

2 a1 2. Using our approximation for G:

(30)
d 2

a1 2
= 1 - -1 + e* -1 + e = 2 Re e - e 2 º 2 Re e

Of course, we must have  Re e > 0 for this case so that G1 < 1. Resonances occur for those values of the wave number
k which make the denominators in (29) small. It is straightforward to show that the minimum magnitude of the denominator
is 2 e , occuring for  kn = p n (n a whole number). Since for our lossless medium a0 2 = a1 2, the escaping wave d
is related to the source wave c at resonance by: 

(31)
d 2

c 2
=

d 2

a1 2

a0 2

c 2
º

Re e
2 e 2

Thus  for  real,  positive  e  the  escaping  wave  power  grows by  a  factor  of  1  2 e  near  resonance.  Assuming that  e  is  not  a
function of k, then the wave number dependence of  d 2 is (again, assuming real, positive e` 1) 

(32)
d 2

c 2
º

2 e

1 - G0 G1 e-2 j k 2
º

e

2 e2 + sin2 k
=

1

1 + sin2 ke2
μ

1

2 e

So at resonance k = n p,  the power gain d 2  c 2 = 1  2 e,  but quickly falls to e 2 as k moves away from resonance

(sin2 k ~ 1p e2).  The intensity of the wave d falls  to half its  peak value as k  moves away from resonance by an amount
that makes sin k = ≤e. For small e, the change in k is simply D k = ≤e, so the full width at half-maximum of each resonance
peak is 2e. As with the case of the lossy transmission line discussed previously, the response near a resonance is approxi-
mately Lorentzian:

(33)
d 2

c 2
º

e 2

D k2 + e2

Figure 7. Typical transmission intensity vs. k of a cavity with slightly leaky terminations.
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