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Experiment 5  
Resonant circuits and active filters 

Now we return to the realm of linear analog circuit design to consider the final op-amp 
circuit topic of the term: resonant circuits and active filters. Two-port networks in this 
category have transfer functions which are described by linear, second-order differential 
equations.  

First we investigate how a bit of positive feedback may be added to our repertory of linear 
op-amp circuit design techniques. We consider a negative impedance circuit which employs 
positive feedback in conjunction with negative feedback. This sort of circuit is found in a 
wide variety of linear op-amp applications including amplifiers, gyrators (inductance 
emulators), current sources, and, in particular, resonant circuits and sinusoidal oscillators. 

Next we switch topics to consider the archetypal resonant circuit: the LC resonator (inductor 
+ capacitor). We use this circuit to define the resonant frequency and quality factor for a 
second-order system, and we investigate the frequency and transient responses of a high-Q, 
tuned circuit. We then introduce the general topic of second-order filters: resonant circuits 
with quality factors of around 1. We describe the behavior of second-order low-pass, high-
pass, and band-pass filters.  

Finally, we implement such filters using linear op-amp circuits containing only RC 
combinations in their feedback networks, eliminating the need for costly and hard-to-find 
inductors. The filters’ circuitry will employ positive as well as negative feedback to 
accomplish this feat. We discuss some of the tradeoffs when selecting the Q to use in a 
second-order filter, and look at Bessel and Butterworth designs in particular. 

As a postscript, the More circuit ideas section presents, among other things, a couple of 
sinusoidal oscillators constructed from resonant circuits. 
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POSIT IVE FEEDBACK IN  L INEAR APPLICAT IONS 

The hallmark of linear op-amp circuit design is the use of negative feedback to maintain the 
two op-amp inputs at the same voltage, as described all the way back in Experiment 1. When 
we used positive feedback in Experiment 4 it was to create a Schmitt trigger, a highly 
nonlinear circuit in which the op-amp output spends its time in either positive or negative 
saturation (except during those brief, slew-rate limited transitions from one saturation limit to 
the other), and the two op-amp inputs are generally at very different voltages. In this section 
we consider linear analog circuits which, nevertheless, include a bit of positive feedback 
along with a strong dose of negative feedback. By using this technique we can design analog 
circuits with a greatly expanded range of capabilities, as we shall soon see.  

The Howland current pump 
A linear op-amp circuit employing both positive and 
negative feedback is the Howland current pump, invented 
many years ago by Bradford Howland at MIT. This circuit 
is an example of a voltage to current converter: it 
establishes a constant current through a load which is 
proportional to an input control voltage.  

First, however, recall the simple circuit in Figure 5-1, 
originally introduced in Experiment 1. In this case the 
load element is positioned in the op-amp’s negative 
feedback loop. Because the two op-amp input voltages are 
equal the supplied input voltage Vin also appears across the resistor R. The op-amp output 
current required to establish this voltage across R must also pass through the load, so the load 
current must be ILoad = Vin/R, and it will be independent of any variation in the load’s 
impedance.  

A significant drawback of the simple circuit of Figure 5-1, however, is that its load must 
float: the load’s two terminals must both be independent of the circuit ground. A more 
common requirement which our simple circuit can’t satisfy is to supply a fixed current into a 
single terminal of a load that itself might be part of a complicated sub-circuit; the injected 
current would then be returned through the system ground or power supplies. The Howland 
Current Pump shown in Figure 5-2 on page 5-2 provides an elegant solution to this design 
problem. To understand how the circuit of Figure 5-2 operates, we’ll use the principle of 
linear superposition presented in Experiment 1.   

 
Figure 5-1: A simple voltage to 
current converter: ILoad = Vin /R. 
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Because the ideal op-amp inputs draw no current, it must be true that the load current is given 
by ILoad = I1 + I2. To determine I1 and I2 we will analyze the circuit in two stages:  

(1) connect the VLoad terminal directly to ground (so that VLoad is 0) and determine I1 and I2 
as a function of the input voltages Vin+  and Vin−;  

(2) next demonstrate that the sum ILoad = I1 + I2 is independent of VLoad , and therefore is 
independent of the load impedance ZLoad .  

First consider step (1). Setting VLoad = 0 grounds the op-amp +Input, so the op-amp part of 
the circuit becomes a simple inverting amplifier with a gain of −1, and the op-amp’s 
Vout = −Vin− . With the VLoad  terminal connected to ground, voltages Vin+  and Vout  then also 
appear across the two lower resistors R, determining currents I1 and I2. Thus, in this case the 
load current ILoad must be: 

5.1 1 2 ( )in inLoadI I I V V R+ −= + = −   

Now for step (2): consider the effect of a change in the load voltage on the load current. 
Because the circuit is linear, it is sufficient to consider the simple case wherein 
Vin+ = Vin− = 0 and then determine how ILoad depends on VLoad ; from the results of step (1) 
we know that ILoad = 0 if VLoad = 0 in this case. What we want to show is that ILoad = 0 is 
maintained even when VLoad ≠ 0. In any case VLoad is the voltage at the op-amp’s +Input. 
Since the terminal at Vin−  is now ground, the op-amp circuit is a pure noninverting amplifier 
with gain 2 for any voltage at its +Input, so Vout = 2VLoad . Since the terminal at Vin+  is 
ground, the voltage drop across the bottom-left resistor in Figure 5-2 is Vin+ − VLoad = −VLoad , 
and therefore I1 = −VLoad/R. The voltage across the bottom-right resistor is 
Vout − VLoad = VLoad , so I2 = VLoad/R. This means that ILoad = I1 + I2 = 0, and the load current 
remains 0 even when there is a nonzero load voltage. By linear superposition, this means that 

Figure 5-2: The Howland current pump 
supplies a current into a terminal of a 
grounded load which is independent of the 
load’s impedance: it implements a current 
source which adjusts the load voltage VLoad 
as necessary to maintain the selected load 
current ILoad. The selected load current is 
determined by the difference in the input 
voltages Vin+ and Vin– and is given by 
equation 5.1; its operation is described in 
the text. 
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even a nonzero load current calculated using (5.1) must be unaffected by changes in VLoad. 
Therefore equation (5.1) is independent of the load impedance ZLoad . The Howland current 
pump serves as a current source whose output is programmed by its differential input voltage 
(Vin+ − Vin−). Note that our derivation, however, assumes that the resistor values are all well-
matched. In particular, this means that the sources of the input voltages Vin+  and Vin−  must 
have low output impedances, so voltage followers will probably be required to buffer these 
inputs. 

More importantly, our analysis of the Howland current pump circuit has implicitly assumed 
that the op-amp can maintain its two input terminals, +Input and −Input, at identical voltages 
as it responds to changes in Vin+  and Vin−  as well as to changes in the load impedance ZLoad . 
But the op-amp’s output is fed back to its +Input via the bottom-right resistor in Figure 5-2, 
so the circuit employs positive as well as negative feedback. Then how do we know that the 
op-amp’s output voltage won’t just run off to saturation, as in the case of a Schmitt trigger 
circuit? In the next section we investigate this potential difficulty. 

Stability of linear circuits which include positive feedback 
Consider the generic analog op-amp circuit shown 
at right. The feedback network is constructed from 
of a set of four impedances forming voltage dividers 
from the op-amp’s output Vout  back to both the op-
amp’s +Input and its –Input. Call the fractions of 
Vout  fed back to these two op-amp inputs f+ and f− , 
respectively; then for this example 

( )i i ff Z Z Z+ + + += + , ( )i i ff Z Z Z− − − −= + . 

At zero frequency (DC), both f+ and f−  are 
nonnegative real numbers, so as long as f− > f+ , the 
net feedback will be negative and the circuit will 
remain stable and linear (note that we must include the output impedance of the source for Vin 
when calculating f+ and f−). At other frequencies, the stability criterion is a little more subtle: 
one must find the set of solutions s = jω  of the equation: 

5.2 ( ) ( ) 1 ( ) 0f j f j g jω ω ω− +− + =   

where g( jω) is the open-loop gain function of the op-amp (as described in Experiment 2). We 
replace all occurrences of jω in equation (5.2) with the complex variable s and then find the 
complex solutions s of (5.2). If the real parts of the various solutions of (5.2) are all negative, 
i.e. Re (s) < 0 for all roots s of this equation, then the circuit will be stable. Proof of this 
criterion is left to the exercises (just kidding!). Actually, proof of this theorem belongs to the 
general field of control system engineering. 

 
Figure 5-3: Generic inverting amplifier with 
some positive feedback as well. 
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The criterion expressed above always gives a correct assessment of a feedback circuit’s 
stability, and it is generally the best way to evaluate our systems. A simpler, more naïve 
criterion is often adequate for our elementary circuits, and it is more intuitive and easier to 
apply: 

Stability criterion when including positive feedback 

As long as the fraction of the op-amp output fed back through the negative feedback 
loop is greater than the fraction fed back through the positive feedback loop, then 
the circuit will probably remain stable and predictable.  

This criterion must hold for all input and load impedances the circuit may encounter 
and for all frequencies the op-amp is capable of amplifying (up to the op-amp’s gain-
bandwidth product), not only the set of frequencies you plan to input to the circuit. 

A negative impedance circuit 
With this stability criterion in mind, consider the circuit in Figure 5-4, a one-port network 
driven by a source with output impedance Zs , as shown. What we are interested in is to 
determine the circuit’s input impedance, Zin = Vin/Iin , and also to decide how the op-amp’s 
two input terminals should be connected in order to ensure the circuit’s stability. 

 
Figure 5-4: A negative impedance circuit. As explained in the text, the input impedance of the op-
amp circuit, Vin/Iin , is –Z, the negative of the impedance of the element  Z in the circuit. The “?” on 
the op-amp symbol implies that we must carefully consider how the op-amp’s inputs should be 
connected — with –Input at top as shown, or should the op-amp’s inputs be flipped? This issue is 
discussed in the text. 

If we assume that the stability criterion is satisfied, i.e. that there is net negative feedback 
around the op-amp, then we can assume that the ideal op-amp’s +Input and −Input voltages 
are equal. This means that the input voltage Vin appears at both op-amp inputs, and, therefore, 
that Vin must be the voltage drop across the impedance Z (since its other end is at ground). 
The resulting current through Z (IZ in the figure) must come from the op-amp output by 
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flowing through the feedback resistor. The voltage drops across the two resistors R in the 
figure are the same: Vout − Vin , so current IZ must also flow through the top resistor from the 
op-amp output toward the input terminal of the circuit. Thus Iin = −IZ (surprise!). Therefore: 

 5.3 Zin in in inZ V I V I Z= = − = −  

The circuit’s input impedance is the negative of the impedance Z — we have a device with a 
negative impedance to ground. Thus, for example, if the impedance Z is a simple resistor, 
then when we apply a positive voltage to the circuit’s input, the circuit will push current back 
into the source; it would be a source of power rather than an absorber of power (of course, 
the extra power ultimately comes from the op-amp’s power supplies). 

Before we consider how to use this circuit for something interesting, we must make sure that 
our original assumption is correct: is the stability criterion satisfied? We must check that 
there is less output feedback to the op-amp’s +Input than to its –Input. Since the two 
feedback resistors each have value R in Figure 5-4, the feedback fraction will depend on the 
impedance to ground at each op-amp terminal, since that impedance will set the voltage 
divider ratio at that terminal. For the –Input terminal in Figure 5-4 this is the impedance Z; 
the impedance to ground at the op-amp’s +Input is the output impedance of the driving 
source, Zs .  

Thus for the configuration shown in Figure 5-4, the stability criterion requires that 
sZ Z<  at all frequencies the op-amp can amplify. If the opposite were true, i.e. 
sZ Z> , then the inputs to the op-amp should be reversed. 

Now let’s consider a simple application of our negative impedance circuit: a 
voltage divider which includes a “resistor” with a negative value, as shown at 
right. The gain of this circuit is Vout/Vin = −R2/(R1 − R2), which has a 
magnitude greater than 1 if R1 < 2R2. We could build this sort of amplifier 
using our negative impedance circuit to realize the negative resistance R2; we 
just have to be careful as we consider the stability criterion in this case.  

The gyrator 
An interesting application of the negative impedance circuit is to try to find a more 
complicated circuit using it which inverts an impedance: Z→1/Z ; then we could emulate an 
inductor using a capacitor (1/jωC→ jωC ). Such a device is called a gyrator. A circuit which 
accomplishes this task using voltage dividers and our negative impedance circuit is shown in 
Figure 5-5 on page 5-6. Working out that this circuit does indeed invert the impedance Z is 
left as an exercise to the reader. What is more problematic, however, is to decide how to 
orient the op-amps’ inputs and apply the stability criterion to this circuit. 

 

1R
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Figure 5-5: A simple gyrator built from nega-
tive impedance converter circuits. Deciding 
how to orient the op-amp inputs could be a 
problem, however. 

 

 
 

A more sophisticated application of combined positive and negative feedback to implement a 
gyrator circuit is shown in Figure 5-6. This circuit is quite different from the negative 
impedance circuit, and it is quite stable, though we won’t consider its stability in detail here. 

 
Figure 5-6: A practical gyrator circuit. The op-amps will maintain their inputs at the same potential, 
so the voltage across Z5 and the voltage at the junction of Z2 and Z3 must both equal the input 
voltage. With this condition it is straightforward to derive the input impedance formula shown. 

Assuming that the op-amps are ideal and working linearly and correctly, then their inputs 
must all be at the same potential, which must be the input voltage, since an op-amp input is 
connected there (Figure 5-6). With this constraint plus the observation that the current 
through Z2 must equal that through Z3, and similarly for the currents through Z4 and Z5, it is 
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straightforward to show that the circuit’s input impedance is given by the expression 
included in the figure. 

The conventional way to emulate an inductor with the gyrator circuit in Figure 5-6 is 
to use a capacitor for Z2 and resistors for the other impedance elements. 
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SECON D-ORDER SYSTEMS AND RESONANCE 

LC resonant amplifier 
Consider the inverting amplifier circuit in Fig-
ure 5-7 and assume for the moment that the op-
amp is ideal. Note that the feedback impedance 
is given by the parallel combination of an in-
ductor L and a capacitor C; in addition there is 
a resistance to which we assign the value 
Q ZLC, where Q is a positive real number and 
ZLC is an impedance (actually a resistance) 
which we will soon define. The gain of the am-
plifier will be, of course, G = −Zf /Ri . The 
parallel feedback elements combine to create 
an impedance of: 

1 1 1
LCf

j C
Z j L QZ

ω
ω

= + +   

At angular frequency ω0, where ω0
2 = 1/LC,  

the two imaginary terms in the expression for 
Zf  cancel, and at that frequency just the real-valued resistance remains, so Zf = Q ZLC . This 
one frequency ω0 at which Zf  is real is called the resonant frequency of the LC combination. 
Although the impedances of the L and C cancel at ω0, neither one is equal to 0; in fact, the 
magnitude of each is equal to what is called the characteristic impedance of the LC 
combination, LCZ L C= . The “quality factor” Q in this case is defined to be the ratio of 
the resistance in parallel with the L and C to their characteristic impedance ZLC.  

In terms of the LC resonant frequency ω0 and characteristic impedance ZLC the gain of the 
inverting amplifier in Figure 5-7 may be expressed as: 

5.4 
0

0

1
iLCZ R

G

j
Q

ωω
ω ω

−
=

 
− + 

 

 ; LC
LZ
C

=  , 0
1
LC

ω =   

Figure 5-8 shows Bode plots of the magnitude and phase of equation (5.4) when Q = 50. If 
Q > 1 then far from the resonant frequency Zf  is dominated by either the impedance of the L 
or the C, and the asymptotic responses (shown by the diagonal dashed lines in Figure 5-8) 
intersect at ω0 with gain G0≡ |G(ω0)| = ZLC/Ri . The phases of the two asymptotes have 
opposite signs, however, and at ω0 their contributions to the gain cancel, leaving only the 
parallel resistance to determine the gain. Thus the gain magnitude and phase change very 

 
Figure 5-7: An inverting amplifier with a parallel 
LC combination forming the feedback imped-
ance. In addition the circuit will include an 
equivalent parallel resistance along with the L 
and C. Its equivalent value QZLC is addressed in 
the text. 

iR

LCQZ

C

L

inV
outV



  Introductory Electronics Laboratory 

5-9 
 

rapidly near ω0, where the denominator of the gain function in expression (5.4) changes by a 
factor of Q within a narrow range of frequency of order ω0/Q (lower pair of plots in Figure 
5-8). This behavior is characteristic of the phenomenon of resonance. Because the 
denominator of (5.4) is quadratic in the angular frequency ω, the circuit in Figure 5-7 is an 
example of a second-order system. 

Transient response of a high-Q resonant circuit 
The gain of a circuit is the ratio of its output and input voltages, so (5.4) can be rewritten as 

 
2

0 0 0

1 LCout out out in
i

Zj j jV V V V
Q R

ω ω ω
ω ω ω

  
+ = −   +      

 

  
Figure 5-8: Bode plots of the LC resonant amplifier of Figure 5-7 for Q = 50. The gain magnitude is 
normalized to G0 = ZLC/Ri. Note that the asymptotic gain lines intersect at ω0 with G = G0, but the 
actual gain at ω0 is Q times larger. Note that the phase plots have been “unwrapped” so that they 
remain continuous as the phase passes through −180° at resonance. 

The lower plots show details of the response near ω0. If  Q is large, then the −3dB gain points are 
separated by Δω-3dB/ ω0 = 1/Q (±1% around ω0 in this example); the phase changes by 90° in this 
same small frequency range. 

0/ω ω 0/ω ω

0/ω ω 0/ω ω

|G
(ω

)|
/G

0
|G

(ω
)|

/G
0



Experiment 5: Second-order systems and resonance   

5-10 
 

This frequency-domain expression may be transformed to the time-domain by replacing jω 
with a time derivative, so the gain expression (5.4) corresponds to the second-order, linear 
differential equation 

5.5 
2

00 0

1 1 1 ( )LCout out out in
i

Zv v v v f t
Q R ωω ω

•• • •−+ = =+  

If Q > 1/2, the homogeneous solution of (5.5) takes the form of a damped harmonic 
oscillation: 

5.6 ( )0 2( ) cos T
t Q

outV t e tω ω φ−∝ + ; ( )2
0 1 1 4T Qω ω= −  

This ringing following a sudden transient input will persist for many cycles if Q is large; 
after Q cycles the ringing amplitude will still be about 4% of its starting value (see Figure 
5-9).1 

 
Figure 5-9: First 25 cycles of the output ringing of the circuit in Figure 5-7 for Q = 50. A negative step 
in the input would excite this response; the ringing initial amplitude would be approximately  
ZLC/Ri times the input step amplitude. 

High-Q resonant circuits such as this are useful to selectively amplify a very specific, narrow 
band of frequencies, such as when a radio receiver is tuned to a particular transmitter’s 
frequency; for this reason they are sometimes called tuned circuits. Note that changing the 
input or the resonant frequency of the circuit must be followed by a waiting period of several 
Q’s of cycles for the circuit’s ringing in response to the change to largely dissipate — high-Q 
tuned circuits have a long settling time. 

Note that if a resonant circuit’s Q were infinite, the ringing would persist indefinitely — we 
would have a sine-wave oscillator. This feat may be accomplished by a judicious use of 
positive feedback in our linear, resonant system to maintain the sinusoidal output. Sine-wave 
oscillators are discussed in the section starting on page 5-22. 

                                                 
1 The transient solution (5.6) could also have been found directly from the complex-valued, frequency-domain 
gain expression (5.4) first by substituting s= jω into its denominator and then finding the two complex values 
for s which make the denominator vanish (the “poles” of the gain expression). The real part of s would give the 
rate of exponential decay, the imaginary part the frequency of the damped oscillations. 
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IN TRODUCTI ON T O SECOND-ORDER ACTIVE  F ILT ERS 

Resonant circuits as filters 
High-Q resonant circuits with responses similar to that shown in Figure 5-8 on page 5-9 are 
useful for the narrow-band, high gain filters needed in radio-frequency tuning circuits. For 
many applications, however, one needs low-pass and high-pass filters with a relatively flat 
pass-band response and a rapid reduction in gain (roll-off) as the signal frequency moves 
beyond the filter’s cutoff frequency. A second-order resonant circuit with a modest Q 
(Q ≲ 1) provides a solution which offers a flatter frequency response in the pass-band, a 
more dramatic out-of-band roll-off, and a faster settling time than you can achieve using 
simple, first-order RC filters. As a set of simple examples reminiscent of our first-order RC 
filters, consider the series LCR circuits configured as voltage dividers in various ways shown 
in Figure 5-10. 

 
 Low-pass Band-pass High-pass 
Figure 5-10: Series LCR circuits configured as simple filters. By forming a voltage divider and taking 
the output from the voltage across each of the various elements, various filter responses may be 
achieved.  

For each of the LCR circuits above, the transfer function will have a denominator (D) like 
that of the gain function in equation (5.4), namely: 

5.7 0

0

1D j
Q

ωω
ω ω

 
≡ − +  

 
; 0

1
LC

ω = ,  
L C

Q
R

=   

These are called second-order filters because D(ω) is quadratic. At the resonant frequency ω0 
each circuit will have 1/D(ω0) = Q. The numerators for the various LCR filters depend on the 
bottom element used in the voltage divider: each numerator is given by Z(ω)/ZLC , where 
Z(ω) is the impedance of the bottom element and ZLC ≡ L C . The resulting transfer 
functions of these three filters for Q = 21/  (making them examples of Butterworth filters, 
described further in the next section) are plotted in Figure 5-11. 
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 Low-pass Band-pass High-pass 
 0( )/G j Dω ω=   (1 )G Q D=  0( )/G j Dω ω=  

   
Figure 5-11: Transfer functions and Bode gain plots for second-order Butterworth filters. The −3dB 
gain points for the band-pass filter are at 0.52ω0 and 1.93ω0; for the others it is at ω0. The out-of-
band filter slopes are ω−2, ω±1, and ω+2. The denominator D in the gain formulas is defined in 
equation 5.7. 

Filter types: choosing the right Q 
If one were to simply cascade two first-order RC low-pass filters with the same −3dB corner 
frequency (the filters separated by a voltage follower), then their combined response would 
be that of a second-order low-pass filter with Q = 1/2. Such a response is characteristic of a 
critically damped second-order system, and this behavior is often sought for by control 
system engineers, especially for mechanical systems such as automobile suspensions. For the 
purposes of electronic signal filtering, however, such a low Q system may sacrifice a bit too 
much in the way of frequency response, because its attenuation (roll-off) near its −3dB cutoff 
frequency 2  is quite gradual (soft), and the filter introduces significant phase shifts at 
frequencies far from this frequency. A high-Q response, on the other hand, may have a steep 
roll-off at its −3dB frequency, but it will exhibit severe gain peaking near its resonant 
frequency and will show a lot of ringing in response to a transient input. Making a choice of 
Q which results in the best compromise of gain flatness and phase shift in the pass-band, 
steepness of the roll-off at the −3dB frequency, and transient response is often a difficult one 
and will depend on your specific application. In this section we give examples of some 
popular choices designers typically consider.  

The most popular choice for a second-order filter is probably the Butterworth filter, named 
after the British physicist Stephen Butterworth and characterized by Q = 21/  (as with the 
filters in Figure 5-11). Its low-pass filter version is called maximally-flat because it the 
highest Q second-order low-pass filter with a monotonically decreasing gain as frequency 

                                                 
2 The −3dB cutoff frequency of a second-order filter is generally not its “corner” frequency. The second-order 
equivalent of a first-order RC filter’s corner frequency would be its resonant frequency ω0. In the case of a 
critically damped low-pass filter (Q = ½), the attenuation at this frequency would be its Q, or −6dB. 
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increases (i.e. no gain peaking or pass-band gain ripple). Its −3dB cutoff frequency is also its 
resonant frequency, ω0. 

A less common choice is the Bessel filter, with Q = 31/ . Its lower Q places its −3dB cutoff 
frequency at 0.79ω0, and the filter roll-off near its −3dB frequency is softer than that of the 
Butterworth (see left-hand graph in Figure 5-12 below). The advantage of the Bessel filter for 
certain applications, however, is that it has constant group delay for frequencies well within 
its pass-band, implying that it will cause the least distortion to the shape of a complicated 
waveform. 

 Frequency response Step-input response 

  
Figure 5-12: Frequency and transient responses of various 2nd order low-pass filters. All filters have 
the same −3dB frequency, but have different Q ’s (the Butterworth filter has legend “Btwrth”). The 
critically damped filter has Q = 1/2. The Q = 1 filter has mild gain peaking (+1.25 dB), but significant 
step response overshoot; its resonant frequency is at 0.79 of its −3dB frequency. 

The critically damped filter mentioned previously (Q = 1/2) has its −3dB cutoff frequency at 
only 0.64ω0, and the filter roll-off there is very gradual (soft). It has the distinction, 
however, of having the highest Q for which its transient response to a step input has no 
overshoot; its output settles following a step input more rapidly than for any other second-
order filter with the same −3dB cutoff frequency (right-hand graph in Figure 5-12), although 
its resonant frequency must be made nearly 60% higher than that of an equivalent 
Butterworth filter. 

 

A very simple VCVS active filter 
The main drawback of LCR filters such as in Figure 5-10 is that they each require a high-
quality inductor as one of the filter elements. This may not be a problem for a filter designed 
to operate at several MHz, but for frequencies below a few MHz your choice of suitable 
inductors may be limited (and such inductors are relatively expensive). Consequently, an 
active filter design implemented using op-amps with RC feedback networks is the more 
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practical solution for a low-frequency filter. A gyrator circuit (Figure 5-6) may be used to 
emulate the inductor, but only if the circuit has one terminal of the inductor connected to 
ground (only the high-pass series LCR filter discussed previously meets this requirement). 
Fortunately, electronics designers have invented several op-amp circuits employing both 
positive and negative feedback which implement quite effective second-order filters. In this 
section we discuss one of these, called a Voltage-Controlled Voltage Source (VCVS) active 
filter. 

A simple VCVS circuit for a second-order low-pass filter is shown in Figure 5-13. It is clearly 
a cascaded pair of simple RC filters followed by a noninverting op-amp gain stage. The 
wrinkle to this circuit, however, is that the first RC filter stage is terminated not by grounding 
its capacitor but by connecting it to the amplifier output, providing some positive feedback 
(also called bootstrapping). This clever change makes the filter’s Q as well as its resonant 
frequency ω0 adjustable by selecting appropriate component values and amplifier gain A. 

Rather than analyze the general case where the component values and amplifier gain are all 
arbitrary, we consider only the special case wherein both resistors and both capacitors are 
chosen to have equal values R and C. In this special case the transfer function of the circuit 
is: 

 Simplified VCVS low-pass filter (Figure 5-13) 
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This result is derived in the supplementary information section starting on page 5-25. The 
circuit is called a VCVS filter because the op-amp stage acts as a voltage-controlled voltage 
source (which is just another way of saying that its output voltage is a function of its input 

 
Figure 5-13: A simple version of the VCVS second-order, active low-pass filter, in which both the 
resistors and the capacitors of the two cascaded RC filters are chosen to be equal. The non-
inverting op-amp amplifier stage has gain A (if a simple voltage follower is used, so A = 1, then the 
circuit would be called a Sallen-Key filter). The circuit’s resonant frequency is ω0 = 1/RC, and its Q = 
1/(3−A). The circuit’s in-band gain is A. 

Gain = A
R

C C

R
inV
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voltage, and that its output impedance is small). Examining the circuit should make it clear 
that its gain at very low frequency, in which case the capacitors’ impedances get very large, 
should approach that of the noninverting amplifier stage, A. Not as clear, perhaps, is that the 
positive feedback stability criterion on page 5-4 will demand that A < 3 (note from the 
equations (5.8) that Q →∞ as A → 3). If the resistor and capacitor values are not well-
matched, then the circuit’s ω0 and Q will vary a bit from the expressions in 5.8. 

High-pass and band-pass versions of the simple VCVS filter are shown in Figure 5-14. If 
A = 1 (i.e. a voltage follower is used for the noninverting op-amp stage), then the circuit is 
called a Sallen-Key filter after its inventors at the MIT Lincoln Laboratory in 1955. The 
section Sallen-Key low-pass filter on page 5-20 shows how to design such a filter. 

 High-pass Band-pass 

   
Figure 5-14: Other VCVS second-order filters. As with the low-pass filter, the filters’ ω0 = 1/RC, and 
Q = 1/(3−A). The in-band gain of the high-pass filter is A; the band-pass filter’s gain at ω0 = QA. Note 
that one resistor in the band-pass version of the filter has value 2R. 

Other active filter circuit topologies; the state-variable filter 
Another common second-order active filter which uses 
only a single op-amp is the multiple-feedback (MFB) 
design, which is most useful for high-Q or high-gain 
filter stages. A low-pass version of the circuit is shown in 
Figure 5-15; to get a high-pass design, simply swap 
resistors for capacitors and vice versa in the circuit. Note 
that this is an inverting amplifier (the pass-band gain is 
−R2/R1) and that the op-amp is configured as an 
integrator. We won’t discuss this filter design any 
further, but you can find several references for designing 
this type of filter in the lab library or on the web. 

A more flexible design than either the VCVS or MFB topologies is the second-order state-
variable filter shown in Figure 5-16, which is from the Texas Instruments ASLK Pro 
Manual, page 32; that document’s Experiment 5 shows how to convert this circuit to a 
voltage-controlled filter. Although this filter uses 4 op-amps, it simultaneously provides low-

Gain = A

R

C C

R

Gain = A

R

C

C

2R

R

 
Figure 5-15: Multiple-feedback 
low-pass filter circuit. 

1R

2R

http://www.sophphx.caltech.edu/Physics_5/Lab_Equipment/analog_system_lab_pro_manual.pdf
http://www.sophphx.caltech.edu/Physics_5/Lab_Equipment/analog_system_lab_pro_manual.pdf
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pass, band-pass, high-pass, and even band-stop filter outputs, and both its pass-band gain A 
and its Q are easily adjustable. Note that the circuit topology is formed from a cascade of two 
inverting integrators and a gain −1 inverting, summing amplifier whose output is fed back to 
become the input to the first integrator. To this basic loop is added a feed-forward section 
around the middle integrator, and in this section the input signal is summed with the output 
of the first integrator. 

 
Figure 5-16: A Universal Active Filter (UAF), a form of second-order, state-variable active filter. This 
design is from the Texas Instruments ASLK Pro Manual, ©Texas Instruments, 2012. It 
simultaneously provides high-pass (HP), low-pass (LP), band-pass (BP), and band-stop (BS) outputs. 
The pass-band filter gain is A; its resonant frequency is ω0 = 1/RC. 

The resonant frequency is, naturally, ω0 = 1/RC. 
The gain in the pass-band of the low-pass, high-
pass, and band-stop filters is A, which from Figure 
5-16 is just the gain for the input signal of the 
summing amplifier at the bottom of the figure; the 
gain of the band-pass filter at ω0 is Q A. From the 
circuit schematic you can see that Q is simply the 
reciprocal of the gain of the feed-forward signal 
from the first integrator through this same summing 
amplifier. The response of the band-stop filter is 
shown at right; its output phase changes by 360° 
across the band-stop resonance. 

You can see how the state-variable filter works by 
first reviewing Figure 5-11 on page 5-12. Starting with the high-pass filter’s response 
function in that figure, note that you can obtain the response functions of the band-pass and 
low-pass filters by successive multiplications by ω0/jω. But this is the same as integrating in 

R

C CR R R

R

QR

R A

R

inV

outV outV outV

outV

(LP)(BP) (HP)

(BS)

 
Figure 5-17: Band stop filter response. 

http://www.sophphx.caltech.edu/Physics_5/Lab_Equipment/analog_system_lab_pro_manual.pdf
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the time-domain, so clearly the successive integrators in the state-variable filter loop (Figure 
5-16) convert the high-pass output to band-pass and then low-pass outputs, as long as 
ω0 = 1/RC. Now with a little bit of arithmetic and keeping in mind that the amplifiers are all 
inverting, you should be able to show that the two summing amplifiers combine the low-pass, 
band-pass, and input signals in just the right way to generate the high-pass response.  

Note that the input impedance of the filter circuit is equal to the single input resistor value 
R/A, so you may need to add a voltage follower to the input if you require a large input 
impedance. 

If you need to be able to easily and independently adjust the gain or Q of a second-order 
active filter or if you need multiple filter outputs to split an input signal into frequency 
sections, then the state-variable filter is a good choice.  

The state-variable filter is really only suitable for filters with a modest Q of 2 or less 
(which is by far the most commonly encountered requirement); otherwise extremely 
good component matching of the various resistors and capacitors may be necessary, 
especially for the band-stop filter output. 
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PRELAB EXERCISES 

1. Consider the voltage divider with a negative 
impedance circuit as one “element” shown in 
Figure 5-18 at right. 

(1) What is the gain ( out inV V )? 

(2) Which way should the op-amp’s inputs be 
oriented (+Input at top or –Input at top)? 
(Assume that the source of inV  is a perfect 
voltage source and the load at outV  has 
infinite input impedance.) 

(3) What are the circuit’s input and output 
impedances? (assume that the source of inV  is 
a perfect voltage source and the load at outV  
has infinite input impedance). 

(4) If 1.0VoutV = , then what is the voltage at the op-amp output? 

2. Consider the Howland current pump shown in Figure 5-2 on page 5-2. What is the op-amp 
output voltage outV  in terms of the input and load voltages inV − , inV + , and LoadV ? 

3. Sketch the phase response Bode plots to go with each of the gain magnitude plots shown 
in Figure 5-11 on page 5-12 for the LCR filters shown in Figure 5-10. 

4. Consider the simple VCVS low-pass filter in Figure 5-13 on page 5-14. What should be the 
ratio of the two resistors of the noninverting amplifier (i.e. Rf /Ri) if you want a 
Butterworth filter response? 

5. Design a cascaded amplifier-filter circuit which has a pass-band gain = 10 and has a 
Butterworth low-pass filter response with a –3dB cutoff frequency of 16 kHz. Use a VCVS 
circuit for the low-pass filter (Figure 5-13 on page 5-14). 

Circuit specifications: 
Input impedance: 1MegΩ 
Pass-band gain: 10 (noninverting) 
Filter spec: Butterworth low-pass, –3dB frequency of 16 kHz 

When you cascade the amplifier and filter, should you put the amplifier or the filter first? 
Which of the above specifications will most strongly influence your choice? 

Hints for resistor selections: 33k 56k 0.59= ; 27 k 5.1k 5.3= . 

 
Figure 5-18: A voltage divider with a nega-
tive impedance (boxed circuit). 

?

inV outV
1k

1k
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LAB PROCEDURE 
Overview 
During lab you will construct the amplifier-filter you designed as part of the prelab exercises. 
Next you will investigate the capabilities of the state-variable filter architecture. 

Amplifier-filter using the VCVS architecture 
Construct the amplifier-filter circuit you designed (Prelab exercise 5) in the white breadboard 
area using a supplied TL082 dual op-amp IC (refer to the TL082 data sheet, page 3 for the IC 
pin-out — make sure you look at the pin-out for the correct IC!). 

Use the Frequency Response application to plot the frequency response of your circuit. Next, 
input a square wave and use the oscilloscope to investigate the filter’s transient response to a 
step input. Compare your results to the graphs in Figure 5-12 on page 5-13. 

State-variable (UAF) filter 
Using an additional TL082 IC, now construct a UAF with a 16kHz resonant frequency as in 
Figure 5-16 on page 5-16. Initially choose a Q of 1 and a pass-band gain A of 1 for 
component selections. You should be able to reuse the same RC pairs you used for the VCVS 
filter for the two integrator sections of the circuit. Check the frequency responses of each of 
the filter’s four outputs. Check the transient response of the low-pass filter output. 

Now, by changing the value of the appropriate resistor, increase the Q to approximately 10 
and look again at the outputs’ frequency responses, especially that of the band-stop (notch) 
filter. Check the low-pass filter’s transient response. 

Additional Circuits 
If you have time, construct a circuit from the MORE CIRCUIT IDEAS section, from an earlier 
experiment, or one of you own design; the Wien bridge oscillator shown in Figure 5-22 on 
page 5-24 is an interesting choice. Another choice is to construct the amplifier with a 
negative impedance circuit shown in Figure 5-18 using your solution to Prelab Exercise 1 as 
a guide. Measure its gain and compare with your calculations. 

Lab results write-up 
As always, include a sketch of the schematic with component values for each circuit you 
investigate, along with appropriate oscilloscope screen shots. 

http://www.sophphx.caltech.edu/Physics_5/Data_sheets/tl082.pdf#page=3
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MORE CIRCUIT  IDEAS 

Sallen-Key low-pass filter 
The simplified VCVS filter presented earlier (Figure 5-13 on page 5-14) with equal Rs and 
Cs in the cascaded low-pass filters is rather inflexible, since the gain of the amplifier must be 
chosen to give the required Q. It is often desirable for the filter’s pass-band gain to equal 1, 
so that the amplifier configuration used is just a simple voltage follower. In this case one gets 
the standard Sallen-Key low-pass filter shown in Figure 5-19. The resistors and capacitors 
now generally need to have unequal values as indicated in the figure by the ratios ρ and κ. 

 
Figure 5-19: Sallen-Key low-pass filter. By using a voltage follower for the VCVS amplifier, the pass-
band gain of the filter is unity; the ratios ρ of the resistors and κ of the two capacitors are chosen 
to select the filter’s Q and resonant frequency ω0. 

The relationships between the filter’s ω0 and Q and these component value ratios are given 
by: 
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Q κρ
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Because the selection of capacitor values is generally more limited than that for resistors, one 
usually picks a convenient capacitor ratio such as κ = 10. With this choice the resistor value 
ratio is determined from the required Q: 

 2 2 2(5 1) (5 1) 1Q Qρ = − ± − −   

Clearly, the resistor value ratio ρ must be real and positive, so the argument of the square 
root must be nonnegative; thus the choice κ = 10 will be valid only for 5 2Q ≤  . This 
requirement is easily met by any reasonable filter Q (usually Q < 1). For a Butterworth filter 
response Q = 21/ , and: 

 Sallen-Key Butterworth filter component values 
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By choosing ρ = 1/18, the filter’s corner frequency is reasonably close to 1/RC, and the 
impedance of the second RC filter is quite a bit larger than that of the first, so the first RC 
filter’s response is only marginally affected by the load of the second RC filter. Once you 
have chosen appropriate values for the ratios κ and ρ, choose C and R to give the desired ω0. 

Many tools are available to help you design active filters. My favorite is this web-based 
application available from Analog Devices: 

Analog Filter Wizard 
http://www.analog.com/designtools/en/filterwizard/  

A simple nonlinear amplifier 
In the next section we discuss the design of sine-wave oscillators, which are essentially 
resonant circuits with a Q of “exactly” the point at complex ∞ when the resonator output 
amplitude  takes on a certain target value; if its amplitude is too large, then the Q is finite and 
positive so that the output amplitude decays back to the target value, whereas if the amplitude 
is too small (as when the circuit is first turned on), then the Q becomes negative, so the 
amplitude increases toward the target value. 

This seemingly remarkable behavior may be accomplished by using a simple nonlinear 
amplifier whose gain decreases as its output amplitude rises. A noninverting version of such 
an amplifier is shown in Figure 5-20. 

 

  

 
Figure 5-20: A simple nonlinear amplifier. For large signal inputs the amplifier’s dynamic gain drops 
to approximately 1, as explained in the text and as illustrated by the Vout v. Vin data shown in the 
right-hand image (Ri = 1k, Rf = 2.2k for the data shown).  

Here’s how the circuit works:  

If the feedback current (Vin/Ri) is small, then the amplifier’s gain is given by the normal 
noninverting amplifier formula 1 + Rf /Ri . As the signals get larger, the feedback current 
goes up; when the voltage drop across Rf  approaches 0.6 V, the silicon diodes begin to 

outV

iR fR

inV

http://www.analog.com/designtools/en/filterwizard/
http://www.analog.com/designtools/en/filterwizard/
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conduct significant current, reducing the effective feedback resistance and thus reducing the 
amplifier’s gain. Since the diodes will limit the voltage drop across Rf  to about 0.6 V as the 
input signal continues to rise, we see that for large inputs Vout will remain a diode drop above 
Vin , and the amplifier’s dynamic gain (dVout/dVin) is reduced to ≈1. This behavior is 
illustrated by the Vout vs. Vin data plotted in Figure 5-20, for Ri = 1.0 k and Rf = 2.2 k. When 
the input voltage is small, the amplifier’s gain is 3.2, as indicated by the slope of the curve 
near the origin. At an input voltage of ≈0.25V, however, the slope of the curve changes 
abruptly as the diodes begin to conduct (the voltage across Rf  is then ~0.6V). As Vin 
continues to increase, Vout/Vin→1 ( Vout/Vin ≈ 1.6  for Vin = 1V). 

Sine-wave oscillators 
As mentioned in the section on resonant circuits, if a second-order system’s Q →∞, then its 
transient response ringing will continue indefinitely at its resonant frequency: it has become a 
sine-wave oscillator. In this section we briefly present a couple of simple sine-wave oscillator 
circuits. As a first example, consider the LC resonant oscillator in Figure 5-21. 

Figure 5-21: A simple LC resonant 
sine-wave oscillator. Its operation is 
explained in the text. 

The oscillator output is taken (via 
the voltage follower) from the signal 
across the LC resonator, producing a 
low-distortion sine-wave output, 
even though the output of the 
nonlinear amplifier may be quite 
distorted. 

 
Some positive feedback is required to sustain the circuit’s oscillation; in this circuit it is 
generated by the voltage divider consisting of the resistor R and the parallel LC resonator. 
This feedback recirculates a fraction of the output of a noninverting nonlinear amplifier back 
to its input. At the resonant frequency 0 1 LCω =  the impedance of the LC resonator 
becomes very large: /LCQZ Q L C= ; for a good-quality resonator, we would expect Q~150 
or more, and the LC component values should be chosen so that LCZ ~ 1k to 10k. By 
choosing R to be about 1/2 of this resonant impedance, the positive feedback fraction is 
about 2/3 at frequency 0ω . At frequencies more than a couple 0 Qω  away from resonance, 
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on the other hand, the LC impedance is  LCjZ±~  or less, so positive feedback at any other 
frequency is 1  and has a 90° phase shift. 

For sustained, constant amplitude oscillation, the gain around the feedback loop, including 
the amplifier, must be exactly 1. The nonlinear amplifier’s gain for a small input signal is 2 
when ifR R= , so for a small signal at 0ω  the loop gain is approximately 2

3 2 1× > . Thus a 
small ω0  signal will grow in amplitude exponentially quickly, whereas a signal at any other 
frequency will die away. As the ω0 signal’s amplitude grows, the nonlinear amplifier’s gain 
will decrease until the amplitude is reached such that the loop gain is exactly unity, and the 
nonlinear amplifier will stabilize its output amplitude at that value. If the feedback resistors 
are each 1k, then the circuit’s output amplitude will be ~1V peak. 

Because the diodes act to clamp the amplifier’s peak output, the amplifier’s output will take 
the form of a distorted sinusoid. The filtering action of the resonant RLC voltage divider, 
however, will provide a much more pure sinusoid across the LC pair, so that is where the 
oscillator’s output is taken (using a voltage follower to isolate the resonator from its load). 
The distortion is minimized when the small-signal loop gain around the nonlinear amplifier 
at frequency ω0 just barely exceeds 1, so trimming of the value of R may be necessary if 
really low distortion is required. Unfortunately, if the small-signal loop gain were to drop 
even a tiny bit below 1, then the circuit will cease to oscillate. If slightly higher distortion in 
the sine-wave output is tolerable, then the diodes in Figure 5-21 may be unnecessary: 
saturation of the amplifier op-amp output ( AV  in Figure 5-21) will limit the oscillator’s 
amplitude, but the signal at the LC resonator (where the output is taken) will still be a quite 
nice sinusoid. 

Very similar in concept to the LC oscillator presented above, the Wien bridge oscillator uses 
RC pairs to form its resonant voltage divider as shown in Figure 5-22 on page 5-24 (a Wien 
bridge-type oscillator was the first product offered by the Hewlett-Packard company, back in 
1939). 

The two RC pairs in the Wien bridge circuit form a resonant voltage divider to provide some 
positive feedback to sustain oscillation. The resonant frequency is 0 1 RCω = , but the filter’s 
Q is only 1/3 when the RC pairs are perfectly matched. The divider ratio is also 1/3 at ω0, so 
the nonlinear amplifier must have a small-signal gain of at least 3 for the circuit to oscillate. 
The diode clamping will severely distort the oscillator output if the amplifier’s small-signal 
gain is even more than a few percent above 3, so some trimming of either fR  or iR  will be 
necessary to limit the distortion in the output waveform. 
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Figure 5-22: The Wien bridge oscillator uses two 
RC pairs to form its resonant voltage divider which 
provides positive feedback to sustain oscillation. 
The oscillation frequency is ω0 = 1/RC. 

At ω0 the positive feedback fraction is 1/3, so the 
small-signal gain of the nonlinear amplifier must 
be at least 3. The resonant divider’s Q =1/3, so, 
because of the diode clamping, achieving a 
tolerable level of distortion will nearly always 
require trimming of the ratio Rf /Ri to just above 2. 

 
 

An alternative (and much better) method of controlling 
the amplifier’s gain is to use an incandescent light bulb 
(one with a glowing filament) in place of resistor iR  as 
shown at right; this is the method used in a truly low-
distortion Wien bridge oscillator. This technique was 
invented by L. A. Meacham of Bell Laboratories in 1938 
and was incorporated in the Hewlett-Packard product 
mentioned previously. As the bulb’s filament heats up, its 
resistance increases, lowering the amplifier’s gain. 
Because a change in the filament temperature is gradual 
(taking much longer than the oscillator’s output period), it has essentially no effect on the 
output waveform shape. For our Wien bridge oscillator, the incandescent bulb used should 
have a resistance when cold of about 100Ω; the amplifier’s feedback resistor should have a 
value about 2.5 times higher. With this version of the oscillator’s amplifier, the output 
signal’s distortion may be so low as to be very hard to measure. 

There are many other designs for op-amp sine-wave oscillators. The following article by 
Texas Instruments provides a nice summary and design procedures for several practical ones: 

http://www.sophphx.caltech.edu/Physics_5/Useful_circuits/TI_Sine_Oscillators.pdf  
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Figure 5-23: An amplifier whose 
gain is controlled by the tempera-
ture of the incandescent bulb used 
as the op-amp’s Ri. 

http://www.sophphx.caltech.edu/Physics_5/Useful_circuits/TI_Sine_Oscillators.pdf
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ADDIT IONAL INFORMATION ABOUT T HE T EXT  IDEAS AND C IRCUIT S 

Derivation of the simple VCVS filter gain 
The simple VCVS low-pass filter pictured in Figure 5-13 on page 5-14 has a transfer 
function given by equations 5.8, repeated below: 
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In this section we derive this result. The circuit is shown again in the figure below, where 
relevant node voltages V1 and V2 are also indicated: 

 
Figure 5-24: The simple version of the VCVS second-order, active low-pass filter, in which both the 
resistors and the capacitors of the two cascaded RC filters are chosen to be equal. 

The op-amp sub-circuit in the dashed box is just a noninverting amplifier with a gain of A, so  

 2 2out outV AV V V A= → =   

The voltage V2 is derived from V1 using an RC voltage divider, so 

 2 1  
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Combining the above equations:  
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The voltage V1 can also be found from the other three voltages using the generalized voltage 
divider equation derived in Experiment 1: 
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Equating the above two expressions for V1 and substituting outV A  for V2: 
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Now we’re almost there. Rearranging the final expression above, with 1CZ j Cω= : 
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Comparing this expression with equation 5.8, we see that they match if 0 1 RCω =  and 
1 (3 )Q A= − . 
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