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Abstract

We demonstrate the ability of a simple algorithm, based on the venerable Method of Images

(MOI), to accurately model the detailed frequency response of a multidimensional, rectangular,

lossy resonant cavity. The convergence properties of the model’s infinite series solution are shown

to be determined by the cavity’s quality factor Q. A 1-D example demonstrates that the MOI

series converges to the exact solution. Next, a comparison to precisely measured 2-D cavity data

confirms that a straightforward extension of the 1-D algorithm to multiple dimensions provides

accurate results. The algorithm is short, easily understandable by undergraduate students, and

relatively undemanding to code. An example using ®Mathematica is provided.
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I. INTRODUCTION

Midway through their sophomore year, our physics majors are introduced to the rigors

and the joys of experimental science by a required and quite difficult lab course. Having

just completed a one-term lecture course introducing the analyses of oscillations, waves, and

normal modes (albeit mostly in one dimension), they now learn how to collect and analyze

frequency and energy spectra generated by a variety of phenomena. These experiences during

lab provide students with a useful working knowledge of several subjects later covered in

detail by upper division lecture courses.

FIG. 1. Configuration of the experimental apparatus. The interior of the rectangular acrylic box

is approximately 152 × 114 × 32 mm. The metal plate serves as the cavity’s bottom boundary, and

the small hole at the plate’s center marks the position of the sound pressure response transducer (a

microphone). Its amplified signal is displayed on the computer monitor as the experimenter moves the

box around on the base plate, mapping out the mode’s nodal line structure. The selected normal mode

corresponds the cavity’s third resonance, near 1.9 kHz.

One of the lab course’s more popular experiments involves the determination of the

dispersion relation of sound waves in air by observing and analyzing the normal mode

frequencies of a small acoustic cavity. Figure 1 is a photo of the apparatus and Fig. 2 shows

2



a high-resolution measurement of the cavity’s frequency response. The expected normal

mode wave numbers are calculated from the rectangular cavity’s measured dimensions, and

these are matched with the corresponding peaks in its measured frequency response. The

rectangular cavity has thick acrylic side walls and a thinner top surface. Its bottom surface

is provided by the sturdy aluminum base plate upon which it rests. The source sound

transducer (speaker) is mounted in a side wall near the cavity’s bottom right corner in the

photo. The response transducer (microphone) is mounted beneath the center of the base

plate (the small opening for this transducer is visible in the base plate just to the left of

center of the cavity’s upper side wall). Moving the cavity around on the base plate changes

the relative position of the response transducer within it.

1 2 3 4 5

Frequency (kHz)

R
es
p
o
n
se

(l
o
g
sc
a
le
)

FIG. 2. Measured frequency response of the cavity. The curve shows the actual data (no smoothing

applied). The logarithmic vertical scale has grid lines separated by factors of 10. The measured

response is generally higher for frequencies of 1.4–2.1 kHz because the conversion efficiencies of the

two transducers are highest in that range. The dashed vertical lines show the expected set of resonant

frequencies determined by the slope of a linear fit of the observed response peaks vs. the cavity’s

expected normal mode wave numbers calculated from its measured dimensions.

The data plotted in Fig. 2 consist of (response transducer)/(source transducer) signal

voltage amplitude ratios (gains) measured at 2070 frequencies, with the transducers posi-

tioned near diagonally opposite corners of the cavity. As expected, the frequency response

peaks correspond to the cavity’s normal modes. If air is nondispersive, then these frequen-

cies should be proportional to the cavity’s normal mode wave numbers. A proportional,
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least-squares fit of the observed peaks’ frequencies to their corresponding normal mode

wave numbers (calculated from the measured cavity dimensions, assuming that the cavity

is rectangular) was performed by optimizing its slope, i.e., the average phase velocity of

sound in air over the measured frequency range. The fit result was quite consistent with the

hypothesis that air is nondispersive over this frequency range. The dashed vertical lines in

Fig. 2 show predicted cavity resonant frequencies calculated from the mode wave numbers

and the best fit slope.1

The accuracy and large dynamic range of the experiment’s data acquisition system enable

it to provide a wealth of detail in the measured gain and phase responses of the cavity. It

should come as no surprise that the cavity’s frequency response peaks at nearly every normal

mode, because, given its construction, the quality factor Q of the cavity’s resonances should

be on the order of 100. What might be surprising, on the other hand, is the rich structure

evident in the response at intermediate frequencies. Interestingly, between several pairs of

resonant frequencies the response drops sharply by as much as two orders of magnitude,

a seemingly resonant-like behavior for which the transducer positions correspond to nodes

rather than antinodes. Between other peaks, however, the response gently falls and rises.

This variation in behavior piques the interests of many of our more sophisticated students

as well as our TAs, and we devote the remainder of this text to modeling the driven response

of the cavity as a function of frequency.

II. STEADY-STATE RESPONSE OF A 1-D CAVITY

As a warm-up exercise, first consider a familiar, one-dimensional example: a resonant

cavity consisting of a section of electromagnetic transmission line of length L with reflective

terminations at positions x = 0 and x = L. Assume that the line is linear, homogeneous,

and nondispersive, but that it has a finite quality factor Q. The cavity is driven by a

constant-amplitude, sinusoidal source coincident with the termination at x = 0.

A. Exact solution

This 1-D system is simple enough to solve exactly. Once the system reaches steady state,

the transmission line supports two traveling waves moving in opposite directions with a
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common wave number k. Let V+(x) be the complex-valued voltage amplitude phasor of the

wave traveling toward larger x values, and V−(x) that of the wave traveling in the opposite

direction.2 With both waves present, the total voltage phasor V (x) at some position x on the

line will then equal V+(x)+V−(x). Assume the line terminations to be ideal, free boundaries

for a wave’s voltage (i.e., the boundaries have infinite impedances), so that at a termination,

the reflected wave’s phasor will equal that of the incident wave. At the right-hand boundary

x = L, it must then be the case that V−(L) = V+(L). At the x = 0 termination, the

outgoing wave V+(0) must also include the driving source power. Denote the complex-

valued source amplitude phasor as VS, so that V+(0) = V−(0) + VS. This model provides

a wave representation of the state of the system,3 presenting us with an inhomogeneous

boundary value problem because of the presence of VS.

The waves V+ and V− propagate on the transmission line in their respective directions. If

the line were not lossy, then the complex phasors representing these traveling waves would

have constant magnitudes as their phases change with position: V+(x+d) = V+(x) exp(ikd)

and V−(x + d) = V−(x) exp(−ikd). Loss introduces a decrease in amplitude along the

direction of propagation that will generally be frequency dependent, and thus also dependent

on the wave number k. We specify this loss using the quality factor Q(k), where the wave’s

squared amplitude (proportional to its intensity) decreases as it propagates, e-folding with

the attenuation length λ(k) = Q(k)/k. Including this attenuation with distance, the two

waves’ propagation operators, or propagators, P+ and P−, become

V+(x+ d) = P+(d)V+(x) and V−(x+ d) = P−(d)V−(x), (1)

where

P+(d) = exp

[
ikd

(
1 +

i

2Q

)]
and P−(d) = exp

[
−ikd

(
1 +

i

2Q

)]
. (2)

We use the propagators P+ and P− to tidy up our derivations. Note a couple of their

properties: P−(d) = P+(−d) = 1/P+(d) and P+(d1+d2) = P+(d1)P+(d2). The loss factor is

parameterized by Q(k) rather than λ(k). For many systems it turns out that Q(k) is a more

slowly varying function of k than is λ(k), except near a resonant absorption feature. The

forms in Eq. (1) for V+(x) and V−(x) provide the traveling wave components we use to derive

the solution to the boundary value problem. This solution will yield V (x), the complex-

valued voltage phasor field on the transmission line, in terms of the source excitation’s
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amplitude VS and its frequency (actually wave number k):

V (x) = V+(x) + V−(x) = P+(x)V+(0) + P−(x)V−(0). (3)

Express V−(0) in terms of V+(0) using the boundary condition at x = L:

V−(0) = P−(−L)V−(L) = P−(−L)V+(L)

= P−(−L)P+(L)V+(0) = P+(2L)V+(0),

so that P−(x)V−(0) = P−(x)P+(2L)V+(0) = P+(2L− x)V+(0). (4)

Next, express V+(0) in terms of VS:

VS = V+(0)− V−(0) = V+(0)[1− P+(2L)],

∴ V+(0) = VS

[
1

1− P+(2L)

]
. (5)

Lastly, put these expressions together to derive the 1-D cavity’s complex-valued response

function, H(k, x) ≡ V (x)/VS:

V (x) = V+(x) + V−(x) = [P+(x) + P+(2L− x)]V+(0)

=

[
P+(x) + P+(2L− x)

1− P+(2L)

]
VS, and

H(k, x) =
P+(x) + P+(2L− x)

1− P+(2L)
=

P+(x− L) + P+(L− x)

P+(−L)− P+(L)
. (6)

The final expression for H in Eq. (6) was obtained by multiplying the previous one by

P+(−L)/P+(−L) and distributing through its numerator and denominator. The dependence

of H on x and L is explicit in these expressions; its dependence on k and Q is through the

propagator definitions in Eq. (2). The final form for H in Eq. (6) is straightforward to

convert to an equivalent trigonometric expression:

H(k, x) = i
cos[k(L− x)(1 + i/2Q)]

sin[kL(1 + i/2Q)]
. (7)

For reasonably high Q the denominator will be small for kn = nπ/L and positive integer

n. At x = L, |H(nπ/L, L)| = 1/ sinh(nπ/2Q) ≈ (2/π)(Q/n) for large Q/n. Clearly, the kn

denote the cavity’s resonant wave numbers, and the H(kn, x) approach ideal normal modes

as Q → ∞.
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B. Method of images model

Now we derive a Method of Images (MOI) approach that leads to a result equivalent

to Eq. (6) for the 1-D cavity’s response function. Consider again the first equality in that

expression:

H(k, x) =
P+(x) + P+(2L− x)

1− P+(2L)
.

Now expand the division by (1−P+(2L)), creating an equivalent series expression. Recalling

that [P+(2L)]
m = P+(2mL), the expression becomes:

H(k, x) = [P+(x) + P+(2L− x)] [1 + P+(2L) + P+(4L) + P+(6L) + . . .] (8)

H(k, x) = P+(x) ⟨direct path contribution from the source⟩

+ P+(x) [P+(2L) + P+(4L) + P+(6L) + . . .] ⟨left images⟩

+ P+(−x) [P+(2L) + P+(4L) + P+(6L) + . . .] ⟨right images⟩ . (9)

Equation (8) is an infinite series representation of the exact solution, Eq. (6). It is also

the series that would result by adding the signals from an infinite array of identical sources

arranged along an infinite transmission line, the sources spaced at intervals of 2L, and the

sum of their individual voltage phasor contributions measured at a point located a distance

x ≤ L from the nearest source. This infinite series for H converges absolutely for finite Q

and k > 0. The ratio of the magnitudes of successive series terms is exp(−kL/Q), which

will approach 1 if kL ≪ Q. In this case the required number of series terms for an accurate

model calculation may be large, as illustrated in Fig. 3.

Keeping the series solution in mind, reconsider the original 1-D cavity configuration:

the terminations at 0 and L, the source coincident with the termination at 0, and the

measurement point at position x, 0 ≤ x ≤ L. Now think of the measured signal V (x) =

V+(x) + V−(x) constructed as follows: the signal from the source reaches x with relative

amplitude P+(x). This signal continues onward and reflects from the termination at L to

return through x with relative amplitude P−(x − L)P+(L) = P+(−x)P+(2L), adding this

value to the measurement. The signal then reflects again at 0 (now with relative amplitude

P+(2L)), subsequently passing yet again by x with P+(x)P+(2L), and so on. The total

signal measured at x is the sum of these contributions, leading again to the series solution

in Eq. (8). Thus, the members of the infinite array of sources described in the preceding
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paragraph represent the source along with an infinite sequence of its mirror images, reflected

by the terminations. Equation (9) rearranges the series representation of H(k, x) as a sum

of signals from the real source and this sequence of reflections. This idea will be the basis

of the Method of Images algorithm presented in the next section.
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FIG. 3. MOI model of the 1-D cavity. The top graphic shows the configuration of the source VS (black

circle), the sense position at the opposite termination V (x = L) (white circle), and image sources (gray

circles) spaced at intervals of 2L. The bottom graphic shows the model frequency response results

for Q = 50. The black curve is for 100 terms of the Eq. (8) series (equivalent to 200 image sources)

and the gray curve is for 25 terms (50 image sources). The plot shows the two lowest resonances,

where convergence is slowest. The 100-term calculation has a maximum relative error of 0.5% (at

kL/π = 0.745).

III. MODELING THE MULTIDIMENSIONAL CAVITY

The method used in the previous section to calculate an exact solution to the steady-state

response of a 1-D resonator is very difficult to extend to the multidimensional geometry of the

acoustic cavity shown in Fig. 1. Useful alternative approaches typically generate an infinite

series which is then truncated to provide adequate accuracy in an approximate method.

One approach, especially when dealing with a high-Q system, might be to perform some

form of normal mode expansion of the inhomogeneous part of the boundary value problem,

generating a set of coupling coefficients to the homogeneous system’s eigenfunctions. Typical

examples might include the coupling of free-space signals into an antenna or optical system

and estimating the changes to a resonator’s normal modes induced by a small perturbing
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effect on its state or geometry. Another common practice, especially in commercial software

used to model very complicated structures, is to discretize the system boundaries and volume

and employ one of a variety of techniques, such as finite element, finite difference, and the

method of moments approaches.4

Presented here is a quite different and simple approach that is easy to understand, even

by early undergraduates: we extend the MOI model from the previous section to the acous-

tic cavity’s multidimensional geometry and use it to numerically approximate the cavity’s

detailed frequency response for any choice of positions for the source and detector within

it.5 The model can be adapted to accommodate mixed boundary conditions, boundaries

that are not perfectly reflective, and transducers that are not isotropic. The method is,

unfortunately, limited to only a small set of cavity geometries. Luckily, a rectangular ge-

ometry happens to be a member of this set. The Appendix provides a brief derivation of

the boundary value problem for the complex-valued sound wave pressure phasor field p(r)

induced in our acoustic cavity and calculates the cavity’s normal modes. It also shows that

the physical dimensions of the cavity (Fig. 1) effectively reduce the required model geometry

to only two dimensions, but extending the analysis to three dimensions is straightforward.

This exercise is an example of finding a Green’s function solution to the problem.6

A. Image source lattice construction

FIG. 4. Source and its image from a planar surface. The source (black circle) and its mirror image

(gray) radiate identical waves. The signal phasor at the detector (white circle) is the coherent sum of

these two signals. The arcs show corresponding surfaces of equal phase for the two emissions.
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The reflection of an isotropic source wave from a flat cavity boundary can be modeled

as an identical wave emitted by an image source as shown in Fig. 4. The advantage of this

model is immediately apparent: the image’s location is unaffected by the detector location

or any other model parameter such as k or Q. One therefore need only calculate the distance

to the detector from the image in order to determine the reflected wave’s contribution to

the response phasor at the detector’s location. It is relatively straightforward to include not

only the attenuations introduced by the propagating medium, but to also add factors to the

image phasor that incorporate any additional amplitude and phase effects introduced by the

reflection at the boundary.7

The rectangular cavity’s multiple boundaries and consequent multiple wave reflections

complicate the situation. Each of the four planar boundaries, of course, requires the inclusion

of its own mirror image of the source. Waves from these images, however, will reflect from

the other interior surfaces of the cavity, and those subsequent reflections must be accounted

for. Thus, each image requires the inclusion of more images to account for these reflected

waves, and so on. The result is an infinite lattice of image sources whose phasor contributions

become the terms in our series solution for the cavity’s response.

Lx

Ly

FIG. 5. A lattice of cavity images. The original, rectangular cavity and its enclosed source (black

boundary and disk) have mirror images tiling the plane. The pattern repeats at intervals of 2Lx

horizontally and 2Ly vertically. Also shown are examples of how a ray to the detector from each image

source corresponds to a unique reflected signal path within the cavity from the real source.

Constructing the lattice of image sources is conceptually simple: reflect the geometry of
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the cavity (including the source) across each of its boundaries, then reflect each of these

images across its own boundaries, etc., until the entire plane (or 3-D space) is tiled with

cavity images. The sources within these images then constitute the infinite set of image

sources to be used in the series solution. Figure 5 illustrates a possible result of this process.

In this example, the actual signal source is located at an interior point of the rectangular

cavity. Note how the source images form identical clusters, regularly spaced at intervals

of twice the horizontal and vertical cavity dimensions, a generalization of the 1-D image

pattern shown in Fig. 3.

As with the 1-D example, each image source corresponds to a unique, reflected path from

real source to detector within the cavity. This correspondence is illustrated by two example

paths in Fig. 5. Note how the lengths and angles of the reflected path segments correspond to

segments of the direct path from image to detector as that path passes through intervening

cavity images. The countably infinite number of reflected paths from source to detector

make up a set isomorphic with the set of image source positions, and the lengths of two

corresponding paths match. These are the essential properties which allow the MOI series

expansion to succeed.8

B. Propagators and the calculation algorithm

Now consider the driven acoustic cavity, whose state, as shown in the Appendix, may

be described by a scalar pressure field p. We continue to assume that the driving source

radiates isotropically into the cavity interior, and that the wave medium is homogeneous,

linear, and isotropic. Given these characteristics, we may conclude that the pressure field

associated with the emitted wave from any source in the image lattice can be characterized by

a complex-valued pressure phasor whose value at any location depends only on its distance r

from the source: p = p(r). Because the isotropic natures of source and medium ensure that

the wave’s local wave vector k is parallel to the location’s radius vector r from the source,

the phase of p(r) is determined by a simple, scalar calculation: exp(ik · r) = exp(ikr).

The amplitude of an emitted wave’s phasor depends on two factors. First is a geometric

factor which requires that, in the absence of absorption by the medium or the cavity bound-

aries, the net total power escaping from an imaginary surface containing the source must

be independent of the surface’s size and shape. For the effectively 2-D cavity geometry,
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this factor must therefore be r−1/2. Second comes the loss of power in the emitted wave.

Air at ordinary lab temperatures and pressures offers very little attenuation to acoustic

waves at audio frequencies. Attenuation in the apparatus shown in Fig. 1 is dominated by

acoustic radiation escaping from the cavity and by frictional losses, both mainly caused by

sound-induced vibrations of the acrylic box and base plate forming the cavity. Nevertheless,

we assume that this attenuation may be adequately described by a quality factor Q(k) at-

tributed to the medium (air), just as for the 1-D example presented earlier. The amplitude

attenuation factor is then exp[−kr/(2Q)], cf. Eq. (2). This is, of course, a greatly simplified

model of the actual loss processes. The final expression for a source’s pressure field phasor

becomes

p(r) = r−1/2 exp(ikr) exp[−kr/(2Q)], (10)

where r is the distance from the source, and Q will be a function of the wave number k.9

The contribution of the nth image source, located at rn, to the total response phasor field

value at the detector position rd is calculated using rn = |rn − rd| in Eq. (10). The image

source contributions coherently add to generate the field value p(rd):

p(rd) =
∞∑
n=1

exp(ikrn)√
rn

exp

[
−krn
2Q

]
. (11)

C. Convergence and accuracy of the model calculations

Consider the convergence of the infinite series of image contributions to the field value

p(rd) given in Eq. (11). Let Lx be the long dimension of the cavity, and let R ≫ Lx be some

very large distance. As R → ∞, the number of image sources N for which |R − rn| < Lx

grows proportionally to R: N ≈ (2πR)(2Lx)/(LxLy) ∼ 4πR/Ly. If there is no loss, then as

R → ∞ these sources’ contribution to p(rd) will be∣∣∣∣∣
N∑ exp(ikrn)√

rn

∣∣∣∣∣ ≈
∣∣∣ ∑N exp(ikrn)

∣∣∣
√
R

. (12)

But the sum in the numerator is just that of N unit vectors in the complex plane with

uncorrelated directions (phases), so as N becomes large |Σ exp(ikrn) | →
√
N ∼ 2

√
πR/Ly.

Therefore, as R → ∞, Eq. (12) approaches a constant, and, if the system is lossless, the

ratio test for absolute convergence fails.10 As was the case for the 1-D example, the series
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convergence is dependent on the loss factor exp[−krn/(2Q)], and an approximate expression

for the magnitude of the total contribution of these N image sources to p(rd) is∣∣∣∣∣
N∑ exp(ikrn)√

rn
exp

[
−krn
2Q

] ∣∣∣∣∣ ∼ 2

√
π

Ly

exp

[
−kR

2Q

]
. (13)

Again taking Lx to be the cavity’s long dimension, consider a sequence of circles centered

on the detector position rd with radii Rm = (2m − 1)Lx for positive integers m. These

circles then define a set of annuli with outer and inner radii of Rm±Lx which tile the plane.

The set of lattice sources within each annulus generates a contribution to the response

phasor p(rd) given in Eq. (11). The magnitude of this contribution may be estimated using

R = (2m − 1)Lx in Eq. (13), an estimate which will be quite accurate for m ≫ 1. Now

assume that we truncate the infinite series for p(rd), including only those sources within the

annuli defined by 1 ≤ m ≤ m0 for some m0 ≫ 1. We wish to estimate the accuracy of this

approximation of the infinite series by estimating the relative magnitude of the sum of the

contributions of the excluded sources.

For the longest wavelength mode, k = π/Lx; for a given Q, this value of k will yield

a slower convergence than for higher-order modes. Using this value, consider the annulus

defined by Rm = (2m − 1)Lx. Let Cm equal the magnitude of the total contribution from

sources in this annulus estimated using Eq. (13),

Cm ∼ 2

√
π

Ly

exp

[
− πRm

2QLx

]
= 2

√
π

Ly

exp

[
−π(2m− 1)

2Q

]
.

=

[
2

√
π

Ly

exp

(
π

2Q

)]
exp

(
− π

Q

)m

. (14)

The Cm are approximated by terms of an infinite geometric series that converges if Q > 0.

Designate the sum of these terms from m to ∞ as Sm. Then

Sm =

[
2

√
π

Ly

exp

(
π

2Q

)] ∞∑
j=m

exp

(
− π

Q

)j

.

=

[
2

√
π

Ly

exp

(
π

2Q

)]
exp

(
− π

Q

)m [
1− exp

(
− π

Q

)]−1

. (15)

Assume that the full series S1 will give a rough approximation of the magnitude of the

detector’s response p(rd) for the lowest mode k = π/Lx and with quality factor Q. An

estimate of the fractional error introduced by the truncation of the MOI model infinite
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series for p(rd) at the annulus defined by Rm0 = (2m0 − 1)Lx is then Sm0+1/S1:

fractional error ∼ Sm0+1/S1 = exp

(
− π

Q

)m0+1

exp

(
− π

Q

)−1

= exp

(
− π

Q

)m0

= exp

(
−m0π

Q

)
. (16)

It must be emphasized that, given the several approximations used to develop Eq. (16), this

expression for the fractional error in the MOI method provides only an order-of-magnitude

estimate. Nevertheless, it is a useful tool for setting the values of computational parameters

used in an MOI algorithm. These results are for k = π/Lx, the lowest frequency resonant

mode of the cavity, for which the series convergence is slowest.
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FIG. 6. Estimated relative errors vs. m0 and Q. Shown are several plots of the Eq. (16) fractional

error estimate as a function of the index m0 at which the infinite series for p(rd) is truncated. Each

line is labeled with the cavity Q value used to generate it. The logarithms are base 10.

Figure 6 provides a graphical analysis of the relative error estimate Eq. (16) in terms of

the series truncation index m0 and cavity Q. This analysis applies to the lowest resonant

mode of the cavity. For a higher frequency resonance, divide the model cavity Q by the

ratio of the desired frequency to that of its the lowest mode before consulting Fig. 6. The

plots clearly demonstrate that the MOI approach can result in a very inefficient model of a

high-Q cavity, but it places much more reasonable computational demands when modeling

cavities with Qs of less than a couple of hundred.
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IV. MODEL IMPLEMENTATION, RESULTS, AND DISCUSSION

The previous section provided the details of an infinite series solution for the steady-

state frequency response of a rectangular acoustic cavity such as that shown in Fig. 1. The

series solution was developed using a Method of Images approach that is particularly well

suited to systems of moderate quality factor Q. We now use the results of the last section

to assess the computational demands required to accurately model the frequency response

of the cavity shown in Fig. 1, whose measured response was presented in Fig. 2. The

widths of the resonance peaks in that figure indicate that the cavity’s Q is approximately

80–150. Knowing that the errors plotted in Fig. 6 are order-of-magnitude estimates, and

because we wish our model to accurately capture the details of the response between the

resonance peaks, we will make conservative use of that figure’s estimates: for Q = 150

and an error target of 0.1%, Fig. 6 suggests that an appropriate truncation limit would be

m0 ≈ 300. With Ly/Lx = 3/4, the interior of a circle with radius 2m0Lx = 600Lx will

include approximately 1.5 million image sources. The calculation of p(rd) using Eq. (11)

requires a distance calculation followed by an exponential and two trigonometric function

calls for each of these sources. This computational effort yields a calculation of the response

at a single location in the cavity for a single wave number, k. Clearly, careful choice of

programming environment and algorithm organization will be important. A ®Mathematica

notebook with a reasonably efficient algorithm is available online.11

Our implementation of the MOI model was configured to approximate the conditions of

the measured frequency response data set of Fig. 2. It used the measured cavity dimensions

and the speed of sound determined from that data.1 To simplify image source indexing for

the model calculations, a square area with side lengths of 2× 600Lx was chosen rather than

a circular area of radius 600Lx. This increased the number of images to over 1.9 million.

To ease this potential computational burden, the modeled source position was selected to

be a corner of the cavity, collapsing each cluster of 4 image sources (Fig. 5) to a single

source, reducing the number of sources to just over 481,000. A further simplification was to

choose rd as the diagonally opposite corner. This placed the images symmetrically around

the response location, reducing the number of unique p(r) calculations from 1.9 million to

only approximately 121,000 per frequency (or k).

Comparisons of the measured data to a calculation using this MOI model are shown in
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Figs. 7 and 8. In order to approximate the behavior of the measured data peak widths versus

frequency, the Q(f) function used for the model increased linearly from Q(1.1 kHz) = 80

to Q(4.5 kHz) = 220. This observed Q(f) behavior may be due to a reduced ability of the

sound to excite vibrations of the cavity’s acrylic box at higher frequencies, reducing the level

of vibration-induced sound emissions. The model took 158 seconds of CPU time to calculate

responses at the 2403 frequencies plotted in Fig. 7, equivalent to approximately 1.8 million

p(r) calculations per second (or about 15 frequencies per second).
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FIG. 7. Comparison of the model to measured data. The model source position rs was in a corner of

the cavity, and the detector position rd was chosen to be the diagonally opposite corner. Approximately

121,000 complex-valued response calculations were performed for each of 2403 frequencies. The result

was normalized to match the measured data near 3 kHz.

The relatively simple, straightforward MOI model algorithm was nevertheless able to

capture the rich structure of the acoustic cavity response with detail which is quite similar

to that of the measured data, even given its assumption of a 2-D model, the chosen source

and detector positions, and very simple loss model. On the other hand, its fidelity to the

measured data leaves much to be desired. The primary flaw is its omission of the frequency

responses of the transducers used to generate and detect the sound. The two transducers

were identical, quite old hearing aid speakers, a vintage of the late 1960s. The reciprocal

nature of these purely electromechanical devices allows one to serve as a detector microphone

while its twin serves as the source speaker. Their frequency response is limited for a variety of

reasons, the primary one being that they were designed to optimize a hearing-impaired user’s

ability to understand the spoken word. As mentioned previously, they have an enhanced
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FIG. 8. Detail of the model vs. measured data. The model successfully reproduces the sharp dips

in the response in these clusters of resonances. Also shown are the positions of the ideal normal mode

frequencies as indicated in Fig. 2. The complicated frequency response structure around these nearly-

degenerate modes (especially the triplet at 4.53 kHz) is addressed in Section 3 of the Appendix.

response over a small range of frequencies centered at 1.7 kHz. Their small size and design

cause their response at lower frequencies to fall rapidly, whereas their high frequency response

falls more gradually to provide some ambient noise filtering.

A simple filter model was created to approximate the observed transducer frequency re-

sponse effects on the measured data. This model was applied to the MOI result, and the

filter parameters were adjusted to optimize the match between the simulation and the mea-

surements. The improved model result is presented in Fig. 9. The remaining discrepancies

in its fidelity to the measured data are probably due mainly to its simplistic loss model:

Eq. (10) with a linear model for Q(f).

In conclusion, the Method of Images approach can clearly be quite successful at calcu-

lating the steady-state frequency responses of resonant cavities with simple geometries and

moderate quality factors. Although not nearly so capable or as fast as the sophisticated al-

gorithms used by commercial software, it has its own advantages. In particular, a program

to efficiently implement an MOI algorithm need consist of only a couple of dozen lines of

code. As such, the algorithm is well-suited for instruction, especially for undergraduates at

the junior or even sophomore level.
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FIG. 9. Applying a transducer frequency response model. The upper dashed curve shows the

transducer frequency response model used to correct the MOI results. It is meant to model the combined

effects of both transducers, and it peaks at 1.72 kHz with a Q of 9. The corrected MOI model was

calculated by multiplying the complex-valued MOI and transducer response phasors at each frequency.
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Appendix: Supplemental information

1. Wave equation for sound propagation

Assume that the sound wave medium (air in this case) is an isotropic, homogeneous,

ideal fluid (continuous, linear, zero viscosity, and lossless) with equilibrium pressure p0 and

density ρ0, which at sea level are approximately 1.01 × 105 pascal and 1.23 gram/liter,

respectively. Given these assumptions, a sound wave induces a stress tensor field on the

medium that reduces to the combination of a scalar pressure change p(r, t) and its gradient

vector ∇p(r, t). Further assume that sound waves will disturb the equilibrium values by

very small amounts, i.e. p(r, t) ≪ p0.
12

A tiny parcel of air within the cavity at equilibrium position r responds to the sound

in two ways: (1) ρ(r, t), its change in density away from ρ0, varies adiabatically with the

local pressure change p(r, t); and (2) its center of mass is accelerated by the local pressure
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gradient ∇p(r, t). The first effect defines a velocity, which turns out to be the speed of

sound, cs:

c2s = (∂p/∂ρ)|p0,ρ0 = p(r, t)/ρ(r, t) = Γ p0/ρ0. (A.1)

For small, adiabatic pressure oscillations at audio frequencies, the ratio of specific heats

Γ of dry air at room temperature is very close to the ideal diatomic gas value of 1.4. At

ultrasonic frequencies CO2 plays a larger role in determining dry air’s Γ, and air becomes

slightly dispersive.13

The vector displacement field X(r, t) of the air parcels’ positions away from equilibrium

is influenced by both effects:

acceleration: ∇p(r, t) = −ρ0
∂2X(r, t)

∂t2
, (A.2)

continuity: ∇ ·X(r, t) = − ρ(r, t)

ρ0
. (A.3)

Combining these three equations results in a homogeneous wave equation for the time-

varying sound pressure amplitude field p(r, t):

from (A.2): ∇2p(r, t) = −ρ0∇ · ∂
2X(r, t)

∂t2
= −ρ0

∂2

∂t2
∇ ·X(r, t),

from (A.3) and (A.1): =
∂2ρ(r, t)

∂t2
= c−2

s

∂2p(r, t)

∂t2
. (A.4)

For a sinusoidal wave oscillating at angular frequency ω, p(r, t) = Re [ p(r) exp(−iωt) ],

defining the wave’s complex-valued pressure phasor field p(r). Substituting this expression

for p(r, t) into Eq. (A.4) results in the phasor field’s corresponding Helmholtz equation:

∇2p(r) + k2p(r) = 0, where k ≡ ω/cs. (A.5)

Clearly, k is the wave number, thus showing that cs, defined in Eq. (A.1), is the sound wave’s

phase velocity vϕ.

2. Boundary conditions and normal modes

If the cavity walls are rigid, then their shapes and positions are unaffected by the sound

pressure field within the cavity, and a tiny air parcel abutting a wall is unable to move in
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a direction perpendicular to it. Therefore, at a rigid boundary with surface normal n(r), it

must be the case that n(r) · ∂2X(r, t)/∂t2 = 0, implying that

n(r) · ∇p(r) = 0. (A.6)

The rigid cavity walls are therefore free boundaries for the sound pressure field, and

Eqs. (A.5) and (A.6) define the Neumann boundary value problem for the sound pres-

sure phasor field.14

Equations (A.5) and (A.6) separate in a Cartesian coordinate system, and, because the

cavity is rectangular, this is an obvious choice. Aligning the origin and the axes with a

cavity corner and its adjoining three edges almost makes the solution obvious by inspection.

Assign Lx, Ly, and Lz as the three cavity edge lengths, and assume a formal solution of

p(r) = px(x)py(y)pz(z). The separated differential equations become

p′′x(x) + k2
x px(x) = 0 with p′x(0) = p′x(Lx) = 0 (ditto for y and z), (A.7)

with the solution, for nonnegative integers l, m, and n such that l +m+ n > 0:

kl = π l/Lx, km = πm/Ly, kn = π n/Lz, (A.8)

k2
l,m,n = k2

l + k2
m + k2

n, (A.9)

and p l,m,n(x, y, z) = cos(kl x) cos(km y) cos(kn z). (A.10)

The pressure field phasor p(r) = p l,m,n(x, y, z) in Eq. (A.10) has been assigned a phase

which makes it a real number. The three cosine factors have identical phases (real). In terms

of traveling waves, each cosine term can be written as a sum of oppositely directed traveling

waves, e.g. cos(kl x) = (1/2)(eikl x + e−ikl x). Multiplying these expressions and gathering

terms will show that p l,m,n(x, y, z) can be written as a sum of as many as 8 equal-amplitude

plane waves, all with wave vectors whose squared magnitudes equal k2
l,m,n, Eq. (A.9), and

whose vector sum vanishes.

The original, homogeneous boundary value problem for these free oscillations, Eqs. (A.5)

and (A.6), is, of course, an eigensystem problem. The k2
l,m,n are the eigenvalues and the

p l,m,n(x, y, z) their corresponding eigenfunctions. Because the problem’s differential equa-

tions, both for the cavity interior and for its boundaries, do not include damping or loss

terms, the eigenvalues are all real. The solutions constitute the set of ideal cavity normal
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modes, a complete set of orthogonal basis states for sound waves in an ideal, rectangular

cavity.

The longest side of the cavity was designed to have length Lx = 6.00 inch, or 15.24 cm.

The other two side lengths were designed to be Ly = 4.50 inch and Lz = 1.25 inch. The

measured lengths are 15.225, 11.442, and 3.185 cm, respectively. The measured Lx and Ly

values are each within 0.1% of their design values, and their ratio is 0.2% away from the

designed 4 : 3 value. The Lz value is about 0.3% greater than its design length. These

numbers set the relevant wave number and therefore frequency ranges of the experiment.

The lowest frequency mode will have wave number k 1,0,0 = π/Lx, with a wavelength equal

to 2Lx. Taking the speed of sound to be 344.7 m/s,1 the lowest mode frequency is expected

to be 1.132 kHz (the measured frequency was 1.1323 kHz).

The lowest mode frequency with a z-component variation corresponds to k 0,0,1, which

is Lx/Lz times that of the lowest mode. The location of the driving source, however, has

z = Lz/2 (see Fig. 1). But this lowest z-mode has a nodal surface at Lz/2, as shown by

Eq. (A.10). This implies that the source position makes it impossible for the source to excite

this mode. The lowest excitable mode for this configuration must be k 0,0,2 with frequency

2Lx/Lz times the lowest mode frequency of 1.132 kHz, or 10.8 kHz.

This lowest frequency involving a mode with a z component to its wave vector, 10.8 kHz,

exceeds the high frequency response limit of the transducers. Thus the wave vectors relevant

to the experiment will all have vertical index n = 0, effectively reducing the cavity geometry

to only two dimensions for the behavior of the pressure field p(r, t) generated by the driving

source and its images, and even with the detector transducer located in the bottom surface

of the cavity (z = 0), its signal is representative of the cavity pressure field at any z, except,

perhaps, when located very near the driving source transducer. Consequently, we will refer

to only the x and y components of the cavity wave vectors with their associated mode indices

l and m.

3. Behavior at degenerate mode frequencies

The rectangular cavity’s normal mode eigenfunctions p l,m(x, y) have a particularly simple

structure (note that the z component factor has been removed from Eq. (A.10) because it≡ 1

and is thus irrelevant at the frequencies we consider). If either the x or y cosine factor’s
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argument in Eq. (A.10) is an odd multiple of π/2, then p l,m(x, y) = 0. This criterion defines

the function’s nodal lines, and in this case the nodal lines are straight and aligned with the

cavity boundaries. The mode index values provide counts of the nodal lines: l is the number

of nodal lines parallel to the y direction, m the number parallel to the x direction. For

example, Fig. 1 shows the experimenter investigating the nodal line structure for the third

normal mode, p 1,1, with a single vertical and a single horizontal nodal line which intersect

at the center of the cavity.

If the ratio of the rectangular cavity boundary lengths is rational, then there will be pairs

of distinct normal modes with the same wave number: kl,m = kl′,m′ . Such a pair is then

degenerate, and linear combinations of them are also eigenfunctions with the same eigenvalue

k2. These linear combinations can have nodal line structures which are very different from

those of the original p l,m and p l′,m′ . Our cavity has a design Ly/Lx = 3/4, and the actual

cavity differs by only 0.2% from this value. Thus, the cavity was designed to have k 4,0 = k 0,3,

making this pair degenerate. The common resonant frequency of the pair is 4 times that of

the k 1,0 mode, or 4.528 kHz.

+ + +- -

p 4,0

+

+

-

-

p 0,3

FIG. 10. Nodal line structures of the (l = 4, m = 0) and (l = 0, m = 3) degenerate cavity modes.

Also shown are the signs of the pressure phasor fields in the areas between nodal lines.

The nodal line structures of these two 4.528 kHz modes are shown in Fig. 10. With

the source transducer placed in a corner of the cavity and emitting this degenerate mode

frequency, both modes should be excited with equal phases and nearly equal amplitudes.

This means that the cavity will respond with a linear combination of the two modes. With

the transducer in the lower left corner of the cavity, for example, the cavity should respond

with the combination p 4,0+p 0,3. The nodal structure of this state, along with its orthogonal

counterpart p 4,0 − p 0,3, are shown in Fig. 11.

Note the interesting nodal line structures of the sum and difference combinations shown
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FIG. 11. Nodal line structures of linear combinations of the (l = 4, m = 0) and (l = 0, m = 3)

degenerate cavity modes. These two linear combinations form an alternative, orthogonal pair of states

spanning the subspace of degenerate modes at this frequency. Also shown is an example of a linear

combination with unequal amplitudes.

in Fig. 11: each nodal line meets a boundary at an angle of 45◦, either at a corner or paired

with another nodal line along a wall. Each of these intersections is a saddle point of the

resultant p(r), satisfying the boundary condition Eq. (A.6) because ∇p(r) = 0 at these

points. Particularly relevant to the measured cavity frequency response is the observation

that diagonally opposite corners of the cavity represent antinode – node pairs. The source

will occupy the antinode position, and a diagonally opposite position of the detector will be

on a nodal line, causing the frequency response to show a sharp decrease at the degenerate

mode frequency. This behavior could not occur at a nondegenerate resonance, where all

corners are antinodes of the individual p l,m eigenfunctions, Eq. (A.10).

Of course, any real cavity is not a perfect rectangle with a side length ratio of exactly 4:3.

Thus, this degeneracy due to an ideally shaped, lossless cavity will be broken by any actual

resonant cavity. A real cavity also would not have zero loss, however, so its resonances have

nonzero quality factors Q, and this makes all the difference. If the errors in the shape of the

cavity break such a degeneracy by a fractional frequency shift smaller than the resonances’
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nominal 1/Q, then two nearly degenerate modes may be mixed strongly enough to behave

in a way that is well-approximated by this ideal description. Such is the case with the cavity

of Fig. 1, who response at 4.53 kHz, shown in Fig. 8, exhibits behavior that is consistent

with the antinode – node response of the ideal p 4,0 + p 0,3 model, as indicated by the sharp

dip confirming the near cancellation of the two modes’ responses over a very narrow range

of frequencies—a behavior present both in the actual data and in the MOI model.

In fact, for the particular design ratio choice of 4:3, there is a further complication in-

volving the p 4,0+p 0,3 degeneracy. The p 3,2 mode would have a k and frequency which differ

from the degenerate pair by only 0.3% at this design ratio. The actual cavity dimensions

would assign mode frequencies of

(f 0,3, f 4,0, f 3,2) = (4.520, 4.529, 4.541) kHz.

The differences of the successive frequencies are only 0.20% and 0.26%, so with a Q ≈

150, these three frequencies form what is effectively a degenerate triplet, complicating the

observed frequency response and nodal line structure near 4.53 kHz (cf. Fig. 8).
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1 The standard deviation of the observed peak frequencies away from the least-squares fit to

ω(k) = vϕ k was only 2.1 Hz for frequencies below 3.5 kHz. The phase velocity vϕ of sound was

determined from the fit to be 344.79±0.24 m/s, in excellent agreement with that calculated using

an ideal gas expression for dry air at the measured lab temperature of 22.4 C: 344.72 m/s. See,

for example, the HyperPhysics Concepts website of Georgia State University, Speed of Sound :

<http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/souspe3.html>.

2 By “phasor” we mean, not the science fiction weapon, but the signal’s complex-valued amplitude

and phase at time t = 0. We then get the phase at any other time by multiplying the phasor by

exp(−iωt). Note that we use the “physics phase convention” for a traveling wave: exp(ik·r−iωt),

rather than the “engineering convention” exp(jωt−j k ·r). Of course, i and j each denote
√
−1,

but the differing symbols might provide the reader with a hint as to which convention is being

used (and j avoids possible confusion with a symbol for electrical current).

3 Those “in the know” will recognize this discussion as providing a somewhat simplified version

of a wave representation of the signals on the transmission line, where we have taken the
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line’s characteristic wave impedance ≡ 1. The current phasor on the line at position x is then

I(x) = V+(x) − V−(x), and a free boundary for the voltage becomes a fixed boundary for the

current, e.g. I(L) = V+(L)− V−(L) = 0.

4 Wikipedia describes several of these methods, e.g.:

<https://en.wikipedia.org/wiki/Finite_element_method>,

<https://en.wikipedia.org/wiki/Method_of_moments_(electromagnetics)_>.

5 Actually, the Method of Images (MOI) enjoys a long history in the computer-aided engineer-

ing analysis of room and structural acoustics. Pioneered in a now-classic paper by Allen and

Berkley,15 it used image sources to estimate the time-domain, reverberation response of a room

to a short sound impulse. The resulting reverberation time envelope characterizes the suitability

of a space as, for example, a lecture hall or recording studio, a diagnostic introduced in 1895 by

W. C. Sabine.16 The method does not, however, employ coherent superposition of waves from

the source and its reflections, and it is therefore unsuitable for frequency response calculations

of a cavity whose dimensions are of the order of a wavelength, as in our case. The use of MOI-

based calculations of a space’s acoustic reverberation response has become a standard of the

industry. The Wayverb website, Ref. 17, includes a summary of current techniques employed

by several popular acoustic engineering tools:

<https://reuk.github.io/wayverb/context.html#existing-software>.

All of these tools, however, are inappropriate for the task at hand.

6 George Green, An Essay on the Application of Mathematical Analysis to the Theories of Electric-

ity and Magnetism (T. Wheelhouse, Nottingham, England 1828). Available at Google Books,

<https://books.google.com/books?id=GwYXAAAAYAAJ>. Also, definitions and examples are

available in: John D. Jackson, Classical Electrodynamics (3rd Ed., John Wiley and Sons, Inc.

1998), ISBN 978-0471309321.

7 We consider only specular reflections for our model, so that angles of incidence and reflection

are equal. The assumed ideal, rigid boundaries have reflection coefficients equal to unity, inde-

pendent of the angle of incidence. These assumptions are quite accurate for the thick, rigid walls

of the small resonant cavity under consideration. For large cavities (such as offices, classrooms,

or auditoriums), these assumptions are inadequate, because diffuse reflections and wall losses

(attenuation) are nontrivial and can be strongly dependent on the angle of incidence.

8 The requirement that multiple mirror images of the cavity generated as described completely
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tile the plane and have disjoint interior regions greatly restricts the geometries of candidate

cavities for this method. Rectangles and equilateral triangles are among the very few available.

More complicated algorithms can be used to generate the set of image sources for a more general

range of polygonal cavity shapes, but such considerations are beyond the scope of this paper.

For examples see the quite sophisticated approach presented by Cuenca, et al., in their 2009

paper, Ref. 18. It employs coherent MOI superposion to analyze the frequency responses of

elastic vibrations in thin, convex, solid plates.

9 Of course, the RHS of Eq. (10) does not evaluate to a pressure amplitude. It should be scaled

by a factor representing the pressure phasor amplitude at some standard distance δ from the

source, e.g. p(δ)δ1/2. As will be seen, this factor is unimportant for our analysis, so it may be

taken to be ≡ 1.

10 This result leads to a conclusion analogous to the venerable “Olbers paradox” of cosmology (H.

R. Olbers, 1823). See, for example: Edward R. Harrison, Darkness at Night: a Riddle of the

Universe (Harvard University Press 1987), ISBN 978-0674192706. See also:

<https://en.wikipedia.org/wiki/Olbers_paradox>

11 <http://sophphx.caltech.edu/MOI>.

The algorithm as implemented could perform approximately 1.8 × 106 image p(r) calculations

per second of CPU time on a fairly modest desktop: 3.1 GHz, 4-core ®Intel i5 with 16 GB

RAM. Two versions of the notebook are provided: MOIannotated.nb has heavily commented

®Mathematica code explaining its details and including example function calls, whereas MOI.nb

is much more terse and streamlined. The website also holds other files related to acoustic cavity

resonance investigations.

12 At the “standard” threshold of human hearing, 0 dB SPL (sound pressure level), a sound

wave’s RMS pressure amplitude is approximately 2 × 10−10 standard atmospheres, or about

0.15 microtorr. At 121 dB SPL, over a million times the threshold amplitude, measured vibration

amplitude of the human eardrum in the area where it is coupled to the inner ear is 350 nm;

at 0 dB SPL this would correspond to an amplitude a million times smaller, or only ∼ 1/300

atomic radius. See: Juergen Tonndorf and Shyam M. Khanna, “Tympanic-membrane vibrations

in human cadaver ears studied by time-averaged holography,” J. Acous. Soc. Am. 52, 1221–1233

(1972).

<https://doi.org/10.1121/1.1913236>.
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Defense Technical Information Center.
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of a space’s acoustics for concert music or as a lecture hall. Modern computational methods

for architectural acoustic design are clearly directly descended from his successful 1895 effort

to improve the acoustics of a lecture hall on the Harvard campus. See Wallace Clement Sabine,

Collected papers on acoustics (Harvard University Press, 1922). Available at Internet Archive’s

Open Library :
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<https://reuk.github.io/wayverb/>.
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